Discovering functional crystalline materials entails navigating an immense combinatorial design space. While recent advances in generative artificial intelligence have enabled the sampling of chemically plausible compositions and structures, a fundamental challenge remains: the objective misalignment between likelihood-based sampling in generative modelling and targeted focus on underexplored regions where novel compounds reside. Here, we introduce a reinforcement learning framework that guides latent denoising diffusion models toward diverse and novel, yet thermodynamically viable crystalline compounds. Our approach integrates group relative policy optimisation with verifiable, multi-objective rewards that jointly balance creativity, stability, and diversity. Beyond de novo generation, we demonstrate enhanced property-guided design that preserves chemical validity, while targeting desired functional properties. This approach establishes a modular foundation for controllable AI-driven inverse design that addresses the novelty-validity trade-off across scientific discovery applications of generative models.