Alert button
Picture for Hyunseung Yoo

Hyunseung Yoo

Alert button

Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA, University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA

Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening

Add code
Bookmark button
Alert button
Jun 30, 2021
Austin Clyde, Thomas Brettin, Alexander Partin, Hyunseung Yoo, Yadu Babuji, Ben Blaiszik, Andre Merzky, Matteo Turilli, Shantenu Jha, Arvind Ramanathan, Rick Stevens

Figure 1 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 2 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 3 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Figure 4 for Protein-Ligand Docking Surrogate Models: A SARS-CoV-2 Benchmark for Deep Learning Accelerated Virtual Screening
Viaarxiv icon

Bridge Data Center AI Systems with Edge Computing for Actionable Information Retrieval

Add code
Bookmark button
Alert button
May 28, 2021
Zhengchun Liu, Ahsan Ali, Peter Kenesei, Antonino Miceli, Hemant Sharma, Nicholas Schwarz, Dennis Trujillo, Hyunseung Yoo, Ryan Coffee, Ryan Herbst, Jana Thayer, Chun Hong Yoon, Ian Foster

Figure 1 for Bridge Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Figure 2 for Bridge Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Figure 3 for Bridge Data Center AI Systems with Edge Computing for Actionable Information Retrieval
Viaarxiv icon

Learning Curves for Drug Response Prediction in Cancer Cell Lines

Add code
Bookmark button
Alert button
Nov 25, 2020
Alexander Partin, Thomas Brettin, Yvonne A. Evrard, Yitan Zhu, Hyunseung Yoo, Fangfang Xia, Songhao Jiang, Austin Clyde, Maulik Shukla, Michael Fonstein, James H. Doroshow, Rick Stevens

Figure 1 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Figure 2 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Figure 3 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Figure 4 for Learning Curves for Drug Response Prediction in Cancer Cell Lines
Viaarxiv icon

Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response

Add code
Bookmark button
Alert button
May 13, 2020
Yitan Zhu, Thomas Brettin, Yvonne A. Evrard, Alexander Partin, Fangfang Xia, Maulik Shukla, Hyunseung Yoo, James H. Doroshow, Rick Stevens

Figure 1 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Figure 2 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Figure 3 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Figure 4 for Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug Response
Viaarxiv icon

A Systematic Approach to Featurization for Cancer Drug Sensitivity Predictions with Deep Learning

Add code
Bookmark button
Alert button
May 04, 2020
Austin Clyde, Tom Brettin, Alexander Partin, Maulik Shaulik, Hyunseung Yoo, Yvonne Evrard, Yitan Zhu, Fangfang Xia, Rick Stevens

Figure 1 for A Systematic Approach to Featurization for Cancer Drug Sensitivity Predictions with Deep Learning
Figure 2 for A Systematic Approach to Featurization for Cancer Drug Sensitivity Predictions with Deep Learning
Figure 3 for A Systematic Approach to Featurization for Cancer Drug Sensitivity Predictions with Deep Learning
Figure 4 for A Systematic Approach to Featurization for Cancer Drug Sensitivity Predictions with Deep Learning
Viaarxiv icon