Abstract:Recently, web platforms have been operating various service domains simultaneously. Targeting a platform that operates multiple service domains, we introduce a new task, Multi-Domain Recommendation to Attract Users (MDRAU), which recommends items from multiple ``unseen'' domains with which each user has not interacted yet, by using knowledge from the user's ``seen'' domains. In this paper, we point out two challenges of MDRAU task. First, there are numerous possible combinations of mappings from seen to unseen domains because users have usually interacted with a different subset of service domains. Second, a user might have different preferences for each of the target unseen domains, which requires that recommendations reflect the user's preferences on domains as well as items. To tackle these challenges, we propose DRIP framework that models users' preferences at two levels (i.e., domain and item) and learns various seen-unseen domain mappings in a unified way with masked domain modeling. Our extensive experiments demonstrate the effectiveness of DRIP in MDRAU task and its ability to capture users' domain-level preferences.
Abstract:Auxiliary function is a helpful component to improve language model's code generation ability. However, a systematic exploration of how they affect has yet to be done. In this work, we comprehensively evaluate the ability to utilize auxiliary functions encoded in recent code-pretrained language models. First, we construct a human-crafted evaluation set, called HumanExtension, which contains examples of two functions where one function assists the other. With HumanExtension, we design several experiments to examine their ability in a multifaceted way. Our evaluation processes enable a comprehensive understanding of including auxiliary functions in the prompt in terms of effectiveness and robustness. An additional implementation style analysis captures the models' various implementation patterns when they access the auxiliary function. Through this analysis, we discover the models' promising ability to utilize auxiliary functions including their self-improving behavior by implementing the two functions step-by-step. However, our analysis also reveals the model's underutilized behavior to call the auxiliary function, suggesting the future direction to enhance their implementation by eliciting the auxiliary function call ability encoded in the models. We release our code and dataset to facilitate this research direction.
Abstract:Document retrieval has greatly benefited from the advancements of large-scale pre-trained language models (PLMs). However, their effectiveness is often limited in theme-specific applications for specialized areas or industries, due to unique terminologies, incomplete contexts of user queries, and specialized search intents. To capture the theme-specific information and improve retrieval, we propose to use a corpus topical taxonomy, which outlines the latent topic structure of the corpus while reflecting user-interested aspects. We introduce ToTER (Topical Taxonomy Enhanced Retrieval) framework, which identifies the central topics of queries and documents with the guidance of the taxonomy, and exploits their topical relatedness to supplement missing contexts. As a plug-and-play framework, ToTER can be flexibly employed to enhance various PLM-based retrievers. Through extensive quantitative, ablative, and exploratory experiments on two real-world datasets, we ascertain the benefits of using topical taxonomy for retrieval in theme-specific applications and demonstrate the effectiveness of ToTER.
Abstract:Matrix completion is an important area of research in recommender systems. Recent methods view a rating matrix as a user-item bi-partite graph with labeled edges denoting observed ratings and predict the edges between the user and item nodes by using the graph neural network (GNN). Despite their effectiveness, they treat each rating type as an independent relation type and thus cannot sufficiently consider the ordinal nature of the ratings. In this paper, we explore a new approach to exploit rating ordinality for GNN, which has not been studied well in the literature. We introduce a new method, called ROGMC, to leverage Rating Ordinality in GNN-based Matrix Completion. It uses cumulative preference propagation to directly incorporate rating ordinality in GNN's message passing, allowing for users' stronger preferences to be more emphasized based on inherent orders of rating types. This process is complemented by interest regularization which facilitates preference learning using the underlying interest information. Our extensive experiments show that ROGMC consistently outperforms the existing strategies of using rating types for GNN. We expect that our attempt to explore the feasibility of utilizing rating ordinality for GNN may stimulate further research in this direction.
Abstract:As language models are often deployed as chatbot assistants, it becomes a virtue for models to engage in conversations in a user's first language. While these models are trained on a wide range of languages, a comprehensive evaluation of their proficiency in low-resource languages such as Korean has been lacking. In this work, we introduce KoDialogBench, a benchmark designed to assess language models' conversational capabilities in Korean. To this end, we collect native Korean dialogues on daily topics from public sources, or translate dialogues from other languages. We then structure these conversations into diverse test datasets, spanning from dialogue comprehension to response selection tasks. Leveraging the proposed benchmark, we conduct extensive evaluations and analyses of various language models to measure a foundational understanding of Korean dialogues. Experimental results indicate that there exists significant room for improvement in models' conversation skills. Furthermore, our in-depth comparisons across different language models highlight the effectiveness of recent training techniques in enhancing conversational proficiency. We anticipate that KoDialogBench will promote the progress towards conversation-aware Korean language models.
Abstract:Recent recommender systems started to use rating elicitation, which asks new users to rate a small seed itemset for inferring their preferences, to improve the quality of initial recommendations. The key challenge of the rating elicitation is to choose the seed items which can best infer the new users' preference. This paper proposes a novel end-to-end Deep learning framework for Rating Elicitation (DRE), that chooses all the seed items at a time with consideration of the non-linear interactions. To this end, it first defines categorical distributions to sample seed items from the entire itemset, then it trains both the categorical distributions and a neural reconstruction network to infer users' preferences on the remaining items from CF information of the sampled seed items. Through the end-to-end training, the categorical distributions are learned to select the most representative seed items while reflecting the complex non-linear interactions. Experimental results show that DRE outperforms the state-of-the-art approaches in the recommendation quality by accurately inferring the new users' preferences and its seed itemset better represents the latent space than the seed itemset obtained by the other methods.
Abstract:The conventional top-K recommendation, which presents the top-K items with the highest ranking scores, is a common practice for generating personalized ranking lists. However, is this fixed-size top-K recommendation the optimal approach for every user's satisfaction? Not necessarily. We point out that providing fixed-size recommendations without taking into account user utility can be suboptimal, as it may unavoidably include irrelevant items or limit the exposure to relevant ones. To address this issue, we introduce Top-Personalized-K Recommendation, a new recommendation task aimed at generating a personalized-sized ranking list to maximize individual user satisfaction. As a solution to the proposed task, we develop a model-agnostic framework named PerK. PerK estimates the expected user utility by leveraging calibrated interaction probabilities, subsequently selecting the recommendation size that maximizes this expected utility. Through extensive experiments on real-world datasets, we demonstrate the superiority of PerK in Top-Personalized-K recommendation task. We expect that Top-Personalized-K recommendation has the potential to offer enhanced solutions for various real-world recommendation scenarios, based on its great compatibility with existing models.
Abstract:Recommender systems often suffer from selection bias as users tend to rate their preferred items. The datasets collected under such conditions exhibit entries missing not at random and thus are not randomized-controlled trials representing the target population. To address this challenge, a doubly robust estimator and its enhanced variants have been proposed as they ensure unbiasedness when accurate imputed errors or predicted propensities are provided. However, we argue that existing estimators rely on miscalibrated imputed errors and propensity scores as they depend on rudimentary models for estimation. We provide theoretical insights into how miscalibrated imputation and propensity models may limit the effectiveness of doubly robust estimators and validate our theorems using real-world datasets. On this basis, we propose a Doubly Calibrated Estimator that involves the calibration of both the imputation and propensity models. To achieve this, we introduce calibration experts that consider different logit distributions across users. Moreover, we devise a tri-level joint learning framework, allowing the simultaneous optimization of calibration experts alongside prediction and imputation models. Through extensive experiments on real-world datasets, we demonstrate the superiority of the Doubly Calibrated Estimator in the context of debiased recommendation tasks.
Abstract:Recently, graph neural networks (GNNs) have been successfully applied to predicting molecular properties, which is one of the most classical cheminformatics tasks with various applications. Despite their effectiveness, we empirically observe that training a single GNN model for diverse molecules with distinct structural patterns limits its prediction performance. In this paper, motivated by this observation, we propose TopExpert to leverage topology-specific prediction models (referred to as experts), each of which is responsible for each molecular group sharing similar topological semantics. That is, each expert learns topology-specific discriminative features while being trained with its corresponding topological group. To tackle the key challenge of grouping molecules by their topological patterns, we introduce a clustering-based gating module that assigns an input molecule into one of the clusters and further optimizes the gating module with two different types of self-supervision: topological semantics induced by GNNs and molecular scaffolds, respectively. Extensive experiments demonstrate that TopExpert has boosted the performance for molecular property prediction and also achieved better generalization for new molecules with unseen scaffolds than baselines. The code is available at https://github.com/kimsu55/ToxExpert.
Abstract:Recent recommender systems have shown remarkable performance by using an ensemble of heterogeneous models. However, it is exceedingly costly because it requires resources and inference latency proportional to the number of models, which remains the bottleneck for production. Our work aims to transfer the ensemble knowledge of heterogeneous teachers to a lightweight student model using knowledge distillation (KD), to reduce the huge inference costs while retaining high accuracy. Through an empirical study, we find that the efficacy of distillation severely drops when transferring knowledge from heterogeneous teachers. Nevertheless, we show that an important signal to ease the difficulty can be obtained from the teacher's training trajectory. This paper proposes a new KD framework, named HetComp, that guides the student model by transferring easy-to-hard sequences of knowledge generated from the teachers' trajectories. To provide guidance according to the student's learning state, HetComp uses dynamic knowledge construction to provide progressively difficult ranking knowledge and adaptive knowledge transfer to gradually transfer finer-grained ranking information. Our comprehensive experiments show that HetComp significantly improves the distillation quality and the generalization of the student model.