Abstract:Process discovery aims to automatically derive process models from event logs, enabling organizations to analyze and improve their operational processes. Inductive mining algorithms, while prioritizing soundness and efficiency through hierarchical modeling languages, often impose a strict block-structured representation. This limits their ability to accurately capture the complexities of real-world processes. While recent advancements like the Partially Ordered Workflow Language (POWL) have addressed the block-structure limitation for concurrency, a significant gap remains in effectively modeling non-block-structured decision points. In this paper, we bridge this gap by proposing an extension of POWL to handle non-block-structured decisions through the introduction of choice graphs. Choice graphs offer a structured yet flexible approach to model complex decision logic within the hierarchical framework of POWL. We present an inductive mining discovery algorithm that uses our extension and preserves the quality guarantees of the inductive mining framework. Our experimental evaluation demonstrates that the discovered models, enriched with choice graphs, more precisely represent the complex decision-making behavior found in real-world processes, without compromising the high scalability inherent in inductive mining techniques.
Abstract:Discovering good process models is essential for different process analysis tasks such as conformance checking and process improvements. Automated process discovery methods often overlook valuable domain knowledge. This knowledge, including insights from domain experts and detailed process documentation, remains largely untapped during process discovery. This paper leverages Large Language Models (LLMs) to integrate such knowledge directly into process discovery. We use rules derived from LLMs to guide model construction, ensuring alignment with both domain knowledge and actual process executions. By integrating LLMs, we create a bridge between process knowledge expressed in natural language and the discovery of robust process models, advancing process discovery methodologies significantly. To showcase the usability of our framework, we conducted a case study with the UWV employee insurance agency, demonstrating its practical benefits and effectiveness.
Abstract:Large Language Models (LLMs) have the potential to semi-automate some process mining (PM) analyses. While commercial models are already adequate for many analytics tasks, the competitive level of open-source LLMs in PM tasks is unknown. In this paper, we propose PM-LLM-Benchmark, the first comprehensive benchmark for PM focusing on domain knowledge (process-mining-specific and process-specific) and on different implementation strategies. We focus also on the challenges in creating such a benchmark, related to the public availability of the data and on evaluation biases by the LLMs. Overall, we observe that most of the considered LLMs can perform some process mining tasks at a satisfactory level, but tiny models that would run on edge devices are still inadequate. We also conclude that while the proposed benchmark is useful for identifying LLMs that are adequate for process mining tasks, further research is needed to overcome the evaluation biases and perform a more thorough ranking of the competitive LLMs.
Abstract:ProMoAI is a novel tool that leverages Large Language Models (LLMs) to automatically generate process models from textual descriptions, incorporating advanced prompt engineering, error handling, and code generation techniques. Beyond automating the generation of complex process models, ProMoAI also supports process model optimization. Users can interact with the tool by providing feedback on the generated model, which is then used for refining the process model. ProMoAI utilizes the capabilities LLMs to offer a novel, AI-driven approach to process modeling, significantly reducing the barrier to entry for users without deep technical knowledge in process modeling.