Abstract:Event logs extracted from information systems offer a rich foundation for understanding and improving business processes. In many real-world applications, it is possible to distinguish between desirable and undesirable process executions, where desirable traces reflect efficient or compliant behavior, and undesirable ones may involve inefficiencies, rule violations, delays, or resource waste. This distinction presents an opportunity to guide process discovery in a more outcome-aware manner. Discovering a single process model without considering outcomes can yield representations poorly suited for conformance checking and performance analysis, as they fail to capture critical behavioral differences. Moreover, prioritizing one behavior over the other may obscure structural distinctions vital for understanding process outcomes. By learning interpretable discriminative rules over control-flow features, we group traces with similar desirability profiles and apply process discovery separately within each group. This results in focused and interpretable models that reveal the drivers of both desirable and undesirable executions. The approach is implemented as a publicly available tool and it is evaluated on multiple real-life event logs, demonstrating its effectiveness in isolating and visualizing critical process patterns.
Abstract:Process discovery aims to derive process models from event logs, providing insights into operational behavior and forming a foundation for conformance checking and process improvement. However, models derived solely from event data may not accurately reflect the real process, as event logs are often incomplete or affected by noise, and domain knowledge, an important complementary resource, is typically disregarded. As a result, the discovered models may lack reliability for downstream tasks. We propose an interactive framework that incorporates domain knowledge, expressed in natural language, into the process discovery pipeline using Large Language Models (LLMs). Our approach leverages LLMs to extract declarative rules from textual descriptions provided by domain experts. These rules are used to guide the IMr discovery algorithm, which recursively constructs process models by combining insights from both the event log and the extracted rules, helping to avoid problematic process structures that contradict domain knowledge. The framework coordinates interactions among the LLM, domain experts, and a set of backend services. We present a fully implemented tool that supports this workflow and conduct an extensive evaluation of multiple LLMs and prompt engineering strategies. Our empirical study includes a case study based on a real-life event log with the involvement of domain experts, who assessed the usability and effectiveness of the framework.




Abstract:Discovering good process models is essential for different process analysis tasks such as conformance checking and process improvements. Automated process discovery methods often overlook valuable domain knowledge. This knowledge, including insights from domain experts and detailed process documentation, remains largely untapped during process discovery. This paper leverages Large Language Models (LLMs) to integrate such knowledge directly into process discovery. We use rules derived from LLMs to guide model construction, ensuring alignment with both domain knowledge and actual process executions. By integrating LLMs, we create a bridge between process knowledge expressed in natural language and the discovery of robust process models, advancing process discovery methodologies significantly. To showcase the usability of our framework, we conducted a case study with the UWV employee insurance agency, demonstrating its practical benefits and effectiveness.