Abstract:An unmanned deformable vehicle is a wheel-legged robot transforming between two configurations: vehicular and humanoid states, with different motion modes and stability characteristics. To address motion stability in multiple configurations, a center-of-mass adjustment mechanism was designed. Further, a motion stability hierarchical control algorithm was proposed, and an electromechanical model based on a two-degree-of-freedom center-of-mass adjustment mechanism was established. An unmanned-deformable-vehicle vehicular-state steady-state steering dynamics model and a gait planning kinematic model of humanoid state walking were established. A stability hierarchical control strategy was designed to realize the stability control. The results showed that the steady-state steering stability in vehicular state and the walking stability in humanoid state could be significantly improved by controlling the slider motion.