Abstract:The successes of intelligent systems have quite relied on the artificial learning of information, which lead to the broad applications of neural learning solutions. As a common sense, the training of neural networks can be largely improved by specifically defined initialization, neuron layers as well as the activation functions. Though there are sequential layer based initialization available, the generalized solution to initial stages is still desired. In this work, an improved approach to initialization of neural learning is presented, which adopts the shrinkage approach to initialize the transformation of each layer of networks. It can be universally adapted for the structures of any networks with random layers, while stable performance can be attained. Furthermore, the smooth learning of networks is adopted in this work, due to the diverse influence on neural learning. Experimental results on several artificial data sets demonstrate that, the proposed method is able to present robust results with the shrinkage initialization, and competent for smooth learning of neural networks.
Abstract:We formulate counting as a sequential decision problem and present a novel crowd counting model solvable by deep reinforcement learning. In contrast to existing counting models that directly output count values, we divide one-step estimation into a sequence of much easier and more tractable sub-decision problems. Such sequential decision nature corresponds exactly to a physical process in reality scale weighing. Inspired by scale weighing, we propose a novel 'counting scale' termed LibraNet where the count value is analogized by weight. By virtually placing a crowd image on one side of a scale, LibraNet (agent) sequentially learns to place appropriate weights on the other side to match the crowd count. At each step, LibraNet chooses one weight (action) from the weight box (the pre-defined action pool) according to the current crowd image features and weights placed on the scale pan (state). LibraNet is required to learn to balance the scale according to the feedback of the needle (Q values). We show that LibraNet exactly implements scale weighing by visualizing the decision process how LibraNet chooses actions. Extensive experiments demonstrate the effectiveness of our design choices and report state-of-the-art results on a few crowd counting benchmarks. We also demonstrate good cross-dataset generalization of LibraNet. Code and models are made available at: https://git.io/libranet
Abstract:In recent years, pattern analysis plays an important role in data mining and recognition, and many variants have been proposed to handle complicated scenarios. In the literature, it has been quite familiar with high dimensionality of data samples, but either such characteristics or large data have become usual sense in real-world applications. In this work, an improved maximum margin criterion (MMC) method is introduced firstly. With the new definition of MMC, several variants of MMC, including random MMC, layered MMC, 2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the MMC network is developed to learn deep features of images in light of simple deep networks. Experimental results on a diversity of data sets demonstrate the discriminant ability of proposed MMC methods are compenent to be adopted in complicated application scenarios.