Abstract:System2 reasoning is developing rapidly these days with the emergence of Deep- Thinking Models and chain-of-thought technology, which has become a centralized discussion point in the AI community. However, there is a relative gap in the research on complex video reasoning at present. In this work, we propose CoT-Vid, a novel training-free paradigm for the video domain with a multistage complex reasoning design. Distinguishing from existing video LLMs, which rely heavily on perceptual abilities, it achieved surprising performance gain with explicit reasoning mechanism. The paradigm consists of three main components: dynamic inference path routing, problem decoupling strategy, and video self-consistency verification. In addition, we propose a new standard for categorization of video questions. CoT- Vid showed outstanding results on a wide range of benchmarks, and outperforms its base model by 9.3% on Egochema and 5.6% on VideoEspresso, rivalling or even surpassing larger and proprietary models, such as GPT-4V, GPT-4o and Gemini-1.5-flash. Our codebase will be publicly available soon.
Abstract:As a novel 3D scene representation, semantic occupancy has gained much attention in autonomous driving. However, existing occupancy prediction methods mainly focus on designing better occupancy representations, such as tri-perspective view or neural radiance fields, while ignoring the advantages of using long-temporal information. In this paper, we propose a radar-camera multi-modal temporal enhanced occupancy prediction network, dubbed TEOcc. Our method is inspired by the success of utilizing temporal information in 3D object detection. Specifically, we introduce a temporal enhancement branch to learn temporal occupancy prediction. In this branch, we randomly discard the t-k input frame of the multi-view camera and predict its 3D occupancy by long-term and short-term temporal decoders separately with the information from other adjacent frames and multi-modal inputs. Besides, to reduce computational costs and incorporate multi-modal inputs, we specially designed 3D convolutional layers for long-term and short-term temporal decoders. Furthermore, since the lightweight occupancy prediction head is a dense classification head, we propose to use a shared occupancy prediction head for the temporal enhancement and main branches. It is worth noting that the temporal enhancement branch is only performed during training and is discarded during inference. Experiment results demonstrate that TEOcc achieves state-of-the-art occupancy prediction on nuScenes benchmarks. In addition, the proposed temporal enhancement branch is a plug-and-play module that can be easily integrated into existing occupancy prediction methods to improve the performance of occupancy prediction. The code and models will be released at https://github.com/VDIGPKU/TEOcc.