Abstract:The impressive linguistic abilities of large language models (LLMs) have recommended them as models of human sentence processing, with some conjecturing a positive 'quality-power' relationship (Wilcox et al., 2023), in which language models' (LMs') fit to psychometric data continues to improve as their ability to predict words in context increases. This is important because it suggests that elements of LLM architecture, such as veridical attention to context and a unique objective of predicting upcoming words, reflect the architecture of the human sentence processing faculty, and that any inadequacies in predicting human reading time and brain imaging data may be attributed to insufficient model complexity, which recedes as larger models become available. Recent studies (Oh and Schuler, 2023) have shown this scaling inverts after a point, as LMs become excessively large and accurate, when word prediction probability (as information-theoretic surprisal) is used as a predictor. Other studies propose the use of entire vectors from differently sized LLMs, still showing positive scaling (Schrimpf et al., 2021), casting doubt on the value of surprisal as a predictor, but do not control for the larger number of predictors in vectors from larger LMs. This study evaluates LLM scaling using entire LLM vectors, while controlling for the larger number of predictors in vectors from larger LLMs. Results show that inverse scaling obtains, suggesting that inadequacies in predicting human reading time and brain imaging data may be due to substantial misalignment between LLMs and human sentence processing, which worsens as larger models are used.
Abstract:Whether and how language models (LMs) acquire the syntax of natural languages has been widely evaluated under the minimal pair paradigm. However, a lack of wide-coverage benchmarks in languages other than English has constrained systematic investigations into the issue. Addressing it, we first introduce ZhoBLiMP, the most comprehensive benchmark of linguistic minimal pairs for Chinese to date, with 118 paradigms, covering 15 linguistic phenomena. We then train 20 LMs of different sizes (14M to 1.4B) on Chinese corpora of various volumes (100M to 3B tokens) and evaluate them along with 14 off-the-shelf LLMs on ZhoBLiMP. The overall results indicate that Chinese grammar can be mostly learned by models with around 500M parameters, trained on 1B tokens with one epoch, showing limited benefits for further scaling. Most (N=95) linguistic paradigms are of easy or medium difficulty for LMs, while there are still 13 paradigms that remain challenging even for models with up to 32B parameters. In regard to how LMs acquire Chinese grammar, we observe a U-shaped learning pattern in several phenomena, similar to those observed in child language acquisition.