Abstract:The evolution of wireless communication toward next-generation networks introduces unprecedented demands on data rates, latency, and connectivity. To meet these requirements, two key trends have emerged: the use of higher communication frequencies to provide broader bandwidth, and the deployment of massive multiple-input multiple-output systems with large antenna arrays to compensate for propagation losses and enhance spatial multiplexing. These advancements significantly extend the Rayleigh distance, enabling near-field (NF) propagation alongside the traditional far-field (FF) regime. As user communication distances dynamically span both FF and NF regions, cross-field (CF) communication has also emerged as a practical consideration. Beam management (BM)-including beam scanning, channel state information estimation, beamforming, and beam tracking-plays a central role in maintaining reliable directional communications. While most existing BM techniques are developed for FF channels, recent works begin to address the unique characteristics of NF and CF regimes. This survey presents a comprehensive review of BM techniques from the perspective of propagation fields. We begin by building the basic through analyzing the modeling of FF, NF, and CF channels, along with the associated beam patterns for alignment. Then, we categorize BM techniques by methodologies, and discuss their operational differences across propagation regimes, highlighting how field-dependent channel characteristics influence design tradeoffs and implementation complexity. In addition, for each BM method, we identify open challenges and future research directions, including extending FF methods to NF or CF scenarios, developing unified BM strategies for field-agnostic deployment, and designing low-overhead BM solutions for dynamic environments.
Abstract:Since decades ago, multi-antenna has become a key enabling technology in the evolution of wireless communication systems. In contrast to conventional multi-antenna systems that contain antennas at fixed positions, position-flexible antenna systems have been proposed to fully utilize the spatial variation of wireless channels. In this paper, movable antenna (MA) systems are analyzed from channel measurement, modeling, position optimization to performance evaluation. First, a broadband channel measurement system with physical MAs is developed, for which the extremely high movable resolution reaches 0.02 mm. A practical two-ray model is constructed based on the channel measurement for a two-dimensional movable antenna system across 32$\times$32 planar port positions at 300 GHz. In light of the measurement results, spatial-correlated channel models for the two-dimensional MA system are proposed, which are statistically parameterized by the covariance matrix of measured channels. Finally, the signal-to-interference-and-noise ratio (SINR)-maximized position selection algorithm is proposed, which achieves 99% of the optimal performance. The performance of different MA systems in terms of spectral efficiency are evaluated and compared for both planar and linear MA systems. Extensive results demonstrate the advantage of MAs over fixed-position antennas in coping with the multi-path fading and improving the spectral efficiency by 10% in a 300 GHz measured channel.
Abstract:The position-fluid antenna (PFA) architecture has become one of the appealing technologies to support ubiquitous connectivity demand in next-generation wireless systems. Specifically, allowing the antenna to adjust its physical position to one of the predefined ports within a fixed region can introduce additional spatial diversity and improve the signal-to-interference-plus-noise ratio (SINR). In addition, frequency diversity is also widely-explored through frequency interleaving in the terahertz (THz) band. However, the operating bandwidth of one antenna is usually limited to 10% of the central frequency, which imposes a waste of the ultra-broad bandwidth in the THz band. In light of this, a frequency-position-fluid antenna (FPFA) system is proposed in this paper to facilitate ultra-dense connectivity. Specifically, antennas with non-overlapping operating frequency ranges are deployed at the base station (BS) to expand the total available bandwidth and provide frequency domain diversity, while the PFA-enabled users are capable of providing the spatial domain diversity. The channel model is first derived, based on which a channel correlation-based frequency allocation strategy is proposed. Then, a minimum-projection-based port selection algorithm is developed with singular-value-decomposition (SVD) precoders. Simulation results show that the proposed FPFA architecture exhibits steady performance with an increasing number of users, and outperforms the PFA and the fixed-antenna system in ultra-dense user deployment.