Abstract:The majority of inhabitants in Hong Kong are able to read and write in standard Chinese but use Cantonese as the primary spoken language in daily life. Spoken Cantonese can be transcribed into Chinese characters, which constitute the so-called written Cantonese. Written Cantonese exhibits significant lexical and grammatical differences from standard written Chinese. The rise of written Cantonese is increasingly evident in the cyber world. The growing interaction between Mandarin speakers and Cantonese speakers is leading to a clear demand for automatic translation between Chinese and Cantonese. This paper describes a transformer-based neural machine translation (NMT) system for written-Chinese-to-written-Cantonese translation. Given that parallel text data of Chinese and Cantonese are extremely scarce, a major focus of this study is on the effort of preparing good amount of training data for NMT. In addition to collecting 28K parallel sentences from previous linguistic studies and scattered internet resources, we devise an effective approach to obtaining 72K parallel sentences by automatically extracting pairs of semantically similar sentences from parallel articles on Chinese Wikipedia and Cantonese Wikipedia. We show that leveraging highly similar sentence pairs mined from Wikipedia improves translation performance in all test sets. Our system outperforms Baidu Fanyi's Chinese-to-Cantonese translation on 6 out of 8 test sets in BLEU scores. Translation examples reveal that our system is able to capture important linguistic transformations between standard Chinese and spoken Cantonese.
Abstract:In this study, we delve into Federated Reinforcement Learning (FedRL) in the context of value-based agents operating across diverse Markov Decision Processes (MDPs). Existing FedRL methods typically aggregate agents' learning by averaging the value functions across them to improve their performance. However, this aggregation strategy is suboptimal in heterogeneous environments where agents converge to diverse optimal value functions. To address this problem, we introduce the Convergence-AwarE SAmpling with scReening (CAESAR) aggregation scheme designed to enhance the learning of individual agents across varied MDPs. CAESAR is an aggregation strategy used by the server that combines convergence-aware sampling with a screening mechanism. By exploiting the fact that agents learning in identical MDPs are converging to the same optimal value function, CAESAR enables the selective assimilation of knowledge from more proficient counterparts, thereby significantly enhancing the overall learning efficiency. We empirically validate our hypothesis and demonstrate the effectiveness of CAESAR in enhancing the learning efficiency of agents, using both a custom-built GridWorld environment and the classical FrozenLake-v1 task, each presenting varying levels of environmental heterogeneity.