Abstract:Future self-adaptive robots are expected to operate in highly dynamic environments while effectively managing uncertainties. However, identifying the sources and impacts of uncertainties in such robotic systems and defining appropriate mitigation strategies is challenging due to the inherent complexity of self-adaptive robots and the lack of comprehensive knowledge about the various factors influencing uncertainty. Hence, practitioners often rely on intuition and past experiences from similar systems to address uncertainties. In this article, we evaluate the potential of large language models (LLMs) in enabling a systematic and automated approach to identify uncertainties in self-adaptive robotics throughout the software engineering lifecycle. For this evaluation, we analyzed 10 advanced LLMs with varying capabilities across four industrial-sized robotics case studies, gathering the practitioners' perspectives on the LLM-generated responses related to uncertainties. Results showed that practitioners agreed with 63-88% of the LLM responses and expressed strong interest in the practicality of LLMs for this purpose.
Abstract:An autonomous vessel (AV) is a complex cyber-physical system (CPS) with software enabling many key functionalities, e.g., navigation software enables an AV to autonomously or semi-autonomously follow a path to its destination. Digital twins of such AVs enable advanced functionalities such as running what-if scenarios, performing predictive maintenance, and enabling fault diagnosis. Due to technological improvements, real-time analyses using continuous data from vessels' real-time operations have become increasingly possible. However, the literature has little explored developing advanced analyses in real-time data in AVs with digital twins built with machine learning techniques. To this end, we present a novel digital twin-based approach (ODDIT) to detect future out-of-distribution (OOD) states of an AV before reaching them, enabling proactive intervention. Such states may indicate anomalies requiring attention (e.g., manual correction by the ship master) and assist testers in scenario-centered testing. The digital twin consists of two machine-learning models predicting future vessel states and whether the predicted state will be OOD. We evaluated ODDIT with five vessels across waypoint and zigzag maneuvering under simulated conditions, including sensor and actuator noise and environmental disturbances i.e., ocean current. ODDIT achieved high accuracy in detecting OOD states, with AUROC and TNR@TPR95 scores reaching 99\% across multiple vessels.
Abstract:Unmanned aerial systems (UAS) rely on various avionics systems that are safety-critical and mission-critical. A major requirement of international safety standards is to perform rigorous system-level testing of avionics software systems. The current industrial practice is to manually create test scenarios, manually/automatically execute these scenarios using simulators, and manually evaluate outcomes. The test scenarios typically consist of setting certain flight or environment conditions and testing the system under test in these settings. The state-of-the-art approaches for this purpose also require manual test scenario development and evaluation. In this paper, we propose a novel approach to automate the system-level testing of the UAS. The proposed approach (AITester) utilizes model-based testing and artificial intelligence (AI) techniques to automatically generate, execute, and evaluate various test scenarios. The test scenarios are generated on the fly, i.e., during test execution based on the environmental context at runtime. The approach is supported by a toolset. We empirically evaluate the proposed approach on two core components of UAS, an autopilot system of an unmanned aerial vehicle (UAV) and cockpit display systems (CDS) of the ground control station (GCS). The results show that the AITester effectively generates test scenarios causing deviations from the expected behavior of the UAV autopilot and reveals potential flaws in the GCS-CDS.
Abstract:System-level testing of avionics software systems requires compliance with different international safety standards such as DO-178C. An important consideration of the avionics industry is automated test data generation according to the criteria suggested by safety standards. One of the recommended criteria by DO-178C is the modified condition/decision coverage (MC/DC) criterion. The current model-based test data generation approaches use constraints written in Object Constraint Language (OCL), and apply search techniques to generate test data. These approaches either do not support MC/DC criterion or suffer from performance issues while generating test data for large-scale avionics systems. In this paper, we propose an effective way to automate MC/DC test data generation during model-based testing. We develop a strategy that utilizes case-based reasoning (CBR) and range reduction heuristics designed to solve MC/DC-tailored OCL constraints. We performed an empirical study to compare our proposed strategy for MC/DC test data generation using CBR, range reduction, both CBR and range reduction, with an original search algorithm, and random search. We also empirically compared our strategy with existing constraint-solving approaches. The results show that both CBR and range reduction for MC/DC test data generation outperform the baseline approach. Moreover, the combination of both CBR and range reduction for MC/DC test data generation is an effective approach compared to existing constraint solvers.