



Abstract:Fairness in AI-driven stress detection is critical for equitable mental healthcare, yet existing models frequently exhibit gender bias, particularly in data-scarce scenarios. To address this, we propose FairM2S, a fairness-aware meta-learning framework for stress detection leveraging audio-visual data. FairM2S integrates Equalized Odds constraints during both meta-training and adaptation phases, employing adversarial gradient masking and fairness-constrained meta-updates to effectively mitigate bias. Evaluated against five state-of-the-art baselines, FairM2S achieves 78.1% accuracy while reducing the Equal Opportunity to 0.06, demonstrating substantial fairness gains. We also release SAVSD, a smartphone-captured dataset with gender annotations, designed to support fairness research in low-resource, real-world contexts. Together, these contributions position FairM2S as a state-of-the-art approach for equitable and scalable few-shot stress detection in mental health AI. We release our dataset and FairM2S publicly with this paper.
Abstract:Anxiety disorders impact millions globally, yet traditional diagnosis relies on clinical interviews, while machine learning models struggle with overfitting due to limited data. Large-scale data collection remains costly and time-consuming, restricting accessibility. To address this, we introduce the Hyperbolic Curvature Few-Shot Learning Network (HCFSLN), a novel Few-Shot Learning (FSL) framework for multimodal anxiety detection, integrating speech, physiological signals, and video data. HCFSLN enhances feature separability through hyperbolic embeddings, cross-modal attention, and an adaptive gating network, enabling robust classification with minimal data. We collected a multimodal anxiety dataset from 108 participants and benchmarked HCFSLN against six FSL baselines, achieving 88% accuracy, outperforming the best baseline by 14%. These results highlight the effectiveness of hyperbolic space for modeling anxiety-related speech patterns and demonstrate FSL's potential for anxiety classification.
Abstract:This study investigates the potential of using smartwatches with built-in microphone sensors for monitoring coughs and detecting various cough types. We conducted a study involving 32 participants and collected 9 hours of audio data in a controlled manner. Afterward, we processed this data using a structured approach, resulting in 223 positive cough samples. We further improved the dataset through augmentation techniques and employed a specialized 1D CNN model. This model achieved an impressive accuracy rate of 98.49% while non-walking and 98.2% while walking, showing smartwatches can detect cough. Moreover, our research successfully identified four distinct types of coughs using clustering techniques.




Abstract:Energy prediction in buildings plays a crucial role in effective energy management. Precise predictions are essential for achieving optimal energy consumption and distribution within the grid. This paper introduces a Long Short-Term Memory (LSTM) model designed to forecast building energy consumption using historical energy data, occupancy patterns, and weather conditions. The LSTM model provides accurate short, medium, and long-term energy predictions for residential and commercial buildings compared to existing prediction models. We compare our LSTM model with established prediction methods, including linear regression, decision trees, and random forest. Encouragingly, the proposed LSTM model emerges as the superior performer across all metrics. It demonstrates exceptional prediction accuracy, boasting the highest R2 score of 0.97 and the most favorable mean absolute error (MAE) of 0.007. An additional advantage of our developed model is its capacity to achieve efficient energy consumption forecasts even when trained on a limited dataset. We address concerns about overfitting (variance) and underfitting (bias) through rigorous training and evaluation on real-world data. In summary, our research contributes to energy prediction by offering a robust LSTM model that outperforms alternative methods and operates with remarkable efficiency, generalizability, and reliability.