Abstract:Fairness in AI-driven stress detection is critical for equitable mental healthcare, yet existing models frequently exhibit gender bias, particularly in data-scarce scenarios. To address this, we propose FairM2S, a fairness-aware meta-learning framework for stress detection leveraging audio-visual data. FairM2S integrates Equalized Odds constraints during both meta-training and adaptation phases, employing adversarial gradient masking and fairness-constrained meta-updates to effectively mitigate bias. Evaluated against five state-of-the-art baselines, FairM2S achieves 78.1% accuracy while reducing the Equal Opportunity to 0.06, demonstrating substantial fairness gains. We also release SAVSD, a smartphone-captured dataset with gender annotations, designed to support fairness research in low-resource, real-world contexts. Together, these contributions position FairM2S as a state-of-the-art approach for equitable and scalable few-shot stress detection in mental health AI. We release our dataset and FairM2S publicly with this paper.
Abstract:Anxiety disorders impact millions globally, yet traditional diagnosis relies on clinical interviews, while machine learning models struggle with overfitting due to limited data. Large-scale data collection remains costly and time-consuming, restricting accessibility. To address this, we introduce the Hyperbolic Curvature Few-Shot Learning Network (HCFSLN), a novel Few-Shot Learning (FSL) framework for multimodal anxiety detection, integrating speech, physiological signals, and video data. HCFSLN enhances feature separability through hyperbolic embeddings, cross-modal attention, and an adaptive gating network, enabling robust classification with minimal data. We collected a multimodal anxiety dataset from 108 participants and benchmarked HCFSLN against six FSL baselines, achieving 88% accuracy, outperforming the best baseline by 14%. These results highlight the effectiveness of hyperbolic space for modeling anxiety-related speech patterns and demonstrate FSL's potential for anxiety classification.