Abstract:Large Language Models (LLMs) are increasingly employed as AI tutors due to their scalability and potential for personalized instruction. However, off-the-shelf LLMs often underperform in educational settings: they frequently reveal answers too readily, fail to adapt their responses to student uncertainty, and remain vulnerable to emotionally manipulative prompts. To address these challenges, we introduce CoDAE, a framework that adapts LLMs for educational use through Chain-of-Thought (CoT) data augmentation. We collect real-world dialogues between students and a ChatGPT-based tutor and enrich them using CoT prompting to promote step-by-step reasoning and pedagogically aligned guidance. Furthermore, we design targeted dialogue cases to explicitly mitigate three key limitations: over-compliance, low response adaptivity, and threat vulnerability. We fine-tune four open-source LLMs on different variants of the augmented datasets and evaluate them in simulated educational scenarios using both automatic metrics and LLM-as-a-judge assessments. Our results show that models fine-tuned with CoDAE deliver more pedagogically appropriate guidance, better support reasoning processes, and effectively resist premature answer disclosure.
Abstract:Text simplification is essential for making complex content accessible to diverse audiences who face comprehension challenges. Yet, the limited availability of simplified materials creates significant barriers to personal and professional growth and hinders social inclusion. Although researchers have explored various methods for automatic text simplification, none fully leverage large language models (LLMs) to offer tailored customization for different target groups and varying levels of simplicity. Moreover, despite its proven benefits for both consumers and organizations, the well-established practice of plain language remains underutilized. In this paper, we https://simplifymytext.org, the first system designed to produce plain language content from multiple input formats, including typed text and file uploads, with flexible customization options for diverse audiences. We employ GPT-4 and Llama-3 and evaluate outputs across multiple metrics. Overall, our work contributes to research on automatic text simplification and highlights the importance of tailored communication in promoting inclusivity.