Abstract:Forecasting conflict-related fatalities remains a central challenge in political science and policy analysis due to the sparse, bursty, and highly non-stationary nature of violence data. We introduce DynAttn, an interpretable dynamic-attention forecasting framework for high-dimensional spatio-temporal count processes. DynAttn combines rolling-window estimation, shared elastic-net feature gating, a compact weight-tied self-attention encoder, and a zero-inflated negative binomial (ZINB) likelihood. This architecture produces calibrated multi-horizon forecasts of expected casualties and exceedance probabilities, while retaining transparent diagnostics through feature gates, ablation analysis, and elasticity measures. We evaluate DynAttn using global country-level and high-resolution PRIO-grid-level conflict data from the VIEWS forecasting system, benchmarking it against established statistical and machine-learning approaches, including DynENet, LSTM, Prophet, PatchTST, and the official VIEWS baseline. Across forecast horizons from one to twelve months, DynAttn consistently achieves substantially higher predictive accuracy, with particularly large gains in sparse grid-level settings where competing models often become unstable or degrade sharply. Beyond predictive performance, DynAttn enables structured interpretation of regional conflict dynamics. In our application, cross-regional analyses show that short-run conflict persistence and spatial diffusion form the core predictive backbone, while climate stress acts either as a conditional amplifier or a primary driver depending on the conflict theater.
Abstract:This paper presents a hybrid framework for literature reviews that augments traditional bibliometric methods with large language models (LLMs). By fine-tuning open-source LLMs, our approach enables scalable extraction of qualitative insights from large volumes of research content, enhancing both the breadth and depth of knowledge synthesis. To improve annotation efficiency and consistency, we introduce an error-focused validation process in which LLMs generate initial labels and human reviewers correct misclassifications. Applying this framework to over 20000 scientific articles about human migration, we demonstrate that a domain-adapted LLM can serve as a "specialist" model - capable of accurately selecting relevant studies, detecting emerging trends, and identifying critical research gaps. Notably, the LLM-assisted review reveals a growing scholarly interest in climate-induced migration. However, existing literature disproportionately centers on a narrow set of environmental hazards (e.g., floods, droughts, sea-level rise, and land degradation), while overlooking others that more directly affect human health and well-being, such as air and water pollution or infectious diseases. This imbalance highlights the need for more comprehensive research that goes beyond physical environmental changes to examine their ecological and societal consequences, particularly in shaping migration as an adaptive response. Overall, our proposed framework demonstrates the potential of fine-tuned LLMs to conduct more efficient, consistent, and insightful literature reviews across disciplines, ultimately accelerating knowledge synthesis and scientific discovery.