Abstract:Terahertz inter-satellite links enable unprecedented sensing precision for Low Earth Orbit (LEO) constellations, yet face fundamental bounds from hardware impairments, pointing errors, and network interference. We develop a Network Cram\'er-Rao Lower Bound (N-CRLB) framework incorporating dynamic topology, hardware quality factor $\Gamma_{\text{eff}}$, phase noise $\sigma^2_\phi$, and cooperative effects through recursive Fisher Information analysis. Our analysis reveals three key insights: (i) hardware and phase noise create power-independent performance ceilings ($\sigma_{\text{ceiling}} \propto \sqrt{\Gamma_{\text{eff}}}$) and floors ($\sigma_{\text{floor}} \propto \sqrt{\sigma^2_\phi}/f_c$), with power-only scaling saturating above $\text{SNR}_{\text{crit}}=1/\Gamma_{\text{eff}}$; (ii) interference coefficients $\alpha_{\ell m}$ enable opportunistic sensing with demonstrated gains of 5.5~dB under specific conditions (65~dB processing gain, 50~dBi antennas); (iii) measurement correlations from shared timing references, when properly modeled, do not degrade performance and can provide common-mode rejection benefits compared to mismodeled independent-noise baselines. Sub-millimeter ranging requires co-optimized hardware ($\Gamma_{\text{eff}}<0.01$), oscillators ($\sigma^2_\phi<10^{-2}$), and appropriate 3D geometry configurations.




Abstract:Molecular communication (MC) provides a foundational framework for information transmission in the Internet of Bio-Nano Things (IoBNT), where efficiency and reliability are crucial. However, the inherent limitations of molecular channels, such as low transmission rates, noise, and inter-symbol interference (ISI), limit their ability to support complex data transmission. This paper proposes an end-to-end semantic learning framework designed to optimize task-oriented molecular communication, with a focus on biomedical diagnostic tasks under resource-constrained conditions. The proposed framework employs a deep encoder-decoder architecture to efficiently extract, quantize, and decode semantic features, prioritizing task-relevant semantic information to enhance diagnostic classification performance. Additionally, a probabilistic channel network is introduced to approximate molecular propagation dynamics, enabling gradient-based optimization for end-to-end learning. Experimental results demonstrate that the proposed semantic framework improves diagnostic accuracy by at least 25% compared to conventional JPEG compression with LDPC coding methods under resource-constrained communication scenarios.