Abstract:This volume includes a selection of papers presented at the Workshop on Advancing Artificial Intelligence through Theory of Mind held at AAAI 2025 in Philadelphia US on 3rd March 2025. The purpose of this volume is to provide an open access and curated anthology for the ToM and AI research community.
Abstract:Are Multi-modal Large Language Models (MLLMs) stochastic parrots? Do they genuinely understand and are capable of performing the tasks they excel at? This paper aims to explore the fundamental basis of MLLMs, i.e. core cognitive abilities that human intelligence builds upon to perceive, comprehend, and reason. To this end, we propose CogDevelop2K, a comprehensive benchmark that spans 12 sub-concepts from fundamental knowledge like object permanence and boundary to advanced reasoning like intentionality understanding, structured via the developmental trajectory of a human mind. We evaluate 46 MLLMs on our benchmarks. Comprehensively, we further evaluate the influence of evaluation strategies and prompting techniques. Surprisingly, we observe a reversed cognitive developmental trajectory compared to humans.