Abstract:Small language models (SLMs) offer significant computational advantages for tool-augmented AI systems, yet they struggle with tool-use tasks, particularly in selecting appropriate tools and identifying correct parameters. A common failure mode is schema misalignment: models hallucinate plausible but non-existent tool names that reflect naming conventions internalized during pretraining but absent from the provided tool schema. Rather than forcing models to adapt to arbitrary schemas, we propose adapting schemas to align with models' pretrained knowledge. We introduce PA-Tool (Pretraining-Aligned Tool Schema Generation), a training-free method that leverages peakedness-a signal from contamination detection indicating pretraining familiarity-to automatically rename tool components. By generating multiple candidates and selecting those with highest output concentration across samples, PA-Tool identifies pretrain-aligned naming patterns. Experiments on MetaTool and RoTBench show improvements of up to 17% points, with schema misalignment errors reduced by 80%. PA-Tool enables small models to approach state-of-the-art performance while maintaining computational efficiency for adaptation to new tools without retraining. Our work demonstrates that schema-level interventions can unlock the tool-use potential of resource-efficient models by adapting schemas to models rather than models to schemas.
Abstract:In Task Oriented Dialogue (TOD) system, detecting and inducing new intents are two main challenges to apply the system in the real world. In this paper, we suggest the semantic multi-view model to resolve these two challenges: (1) SBERT for General Embedding (GE), (2) Multi Domain Batch (MDB) for dialogue domain knowledge, and (3) Proxy Gradient Transfer (PGT) for cluster-specialized semantic. MDB feeds diverse dialogue datasets to the model at once to tackle the multi-domain problem by learning the multiple domain knowledge. We introduce a novel method PGT, which employs the Siamese network to fine-tune the model with a clustering method directly.Our model can learn how to cluster dialogue utterances by using PGT. Experimental results demonstrate that our multi-view model with MDB and PGT significantly improves the Open Intent Induction performance compared to baseline systems.