Abstract:Large Audio-Language Models (LALMs) as judges have emerged as a prominent approach for evaluating speech generation quality, yet their ability to assess speaker consistency across multi-turn conversations remains unexplored. We present SpeakerSleuth, a benchmark evaluating whether LALMs can reliably judge speaker consistency in multi-turn dialogues through three tasks reflecting real-world requirements. We construct 1,818 human-verified evaluation instances across four diverse datasets spanning synthetic and real speech, with controlled acoustic difficulty. Evaluating nine widely-used LALMs, we find that models struggle to reliably detect acoustic inconsistencies. For instance, given audio samples of the same speaker's turns, some models overpredict inconsistency, whereas others are overly lenient. Models further struggle to identify the exact turns that are problematic. When other interlocutors' turns are provided together, performance degrades dramatically as models prioritize textual coherence over acoustic cues, failing to detect even obvious gender switches for a speaker. On the other hand, models perform substantially better in choosing the audio that best matches the speaker among several acoustic variants, demonstrating inherent acoustic discrimination capabilities. These findings expose a significant bias in LALMs: they tend to prioritize text over acoustics, revealing fundamental modality imbalances that need to be addressed to build reliable audio-language judges.




Abstract:Small language models (SLMs) offer significant computational advantages for tool-augmented AI systems, yet they struggle with tool-use tasks, particularly in selecting appropriate tools and identifying correct parameters. A common failure mode is schema misalignment: models hallucinate plausible but non-existent tool names that reflect naming conventions internalized during pretraining but absent from the provided tool schema. Rather than forcing models to adapt to arbitrary schemas, we propose adapting schemas to align with models' pretrained knowledge. We introduce PA-Tool (Pretraining-Aligned Tool Schema Generation), a training-free method that leverages peakedness-a signal from contamination detection indicating pretraining familiarity-to automatically rename tool components. By generating multiple candidates and selecting those with highest output concentration across samples, PA-Tool identifies pretrain-aligned naming patterns. Experiments on MetaTool and RoTBench show improvements of up to 17% points, with schema misalignment errors reduced by 80%. PA-Tool enables small models to approach state-of-the-art performance while maintaining computational efficiency for adaptation to new tools without retraining. Our work demonstrates that schema-level interventions can unlock the tool-use potential of resource-efficient models by adapting schemas to models rather than models to schemas.
Abstract:Recent studies apply psychometric questionnaires to Large Language Models (LLMs) to assess high-level psychological constructs such as values, personality, moral foundations, and dark traits. Although prior work has raised concerns about possible data contamination from psychometric inventories, which may threaten the reliability of such evaluations, there has been no systematic attempt to quantify the extent of this contamination. To address this gap, we propose a framework to systematically measure data contamination in psychometric evaluations of LLMs, evaluating three aspects: (1) item memorization, (2) evaluation memorization, and (3) target score matching. Applying this framework to 21 models from major families and four widely used psychometric inventories, we provide evidence that popular inventories such as the Big Five Inventory (BFI-44) and Portrait Values Questionnaire (PVQ-40) exhibit strong contamination, where models not only memorize items but can also adjust their responses to achieve specific target scores.