Abstract:Small language models (SLMs) offer significant computational advantages for tool-augmented AI systems, yet they struggle with tool-use tasks, particularly in selecting appropriate tools and identifying correct parameters. A common failure mode is schema misalignment: models hallucinate plausible but non-existent tool names that reflect naming conventions internalized during pretraining but absent from the provided tool schema. Rather than forcing models to adapt to arbitrary schemas, we propose adapting schemas to align with models' pretrained knowledge. We introduce PA-Tool (Pretraining-Aligned Tool Schema Generation), a training-free method that leverages peakedness-a signal from contamination detection indicating pretraining familiarity-to automatically rename tool components. By generating multiple candidates and selecting those with highest output concentration across samples, PA-Tool identifies pretrain-aligned naming patterns. Experiments on MetaTool and RoTBench show improvements of up to 17% points, with schema misalignment errors reduced by 80%. PA-Tool enables small models to approach state-of-the-art performance while maintaining computational efficiency for adaptation to new tools without retraining. Our work demonstrates that schema-level interventions can unlock the tool-use potential of resource-efficient models by adapting schemas to models rather than models to schemas.
Abstract:Recent studies apply psychometric questionnaires to Large Language Models (LLMs) to assess high-level psychological constructs such as values, personality, moral foundations, and dark traits. Although prior work has raised concerns about possible data contamination from psychometric inventories, which may threaten the reliability of such evaluations, there has been no systematic attempt to quantify the extent of this contamination. To address this gap, we propose a framework to systematically measure data contamination in psychometric evaluations of LLMs, evaluating three aspects: (1) item memorization, (2) evaluation memorization, and (3) target score matching. Applying this framework to 21 models from major families and four widely used psychometric inventories, we provide evidence that popular inventories such as the Big Five Inventory (BFI-44) and Portrait Values Questionnaire (PVQ-40) exhibit strong contamination, where models not only memorize items but can also adjust their responses to achieve specific target scores.
Abstract:The importance of benchmarks for assessing the values of language models has been pronounced due to the growing need of more authentic, human-aligned responses. However, existing benchmarks rely on human or machine annotations that are vulnerable to value-related biases. Furthermore, the tested scenarios often diverge from real-world contexts in which models are commonly used to generate text and express values. To address these issues, we propose the Value Portrait benchmark, a reliable framework for evaluating LLMs' value orientations with two key characteristics. First, the benchmark consists of items that capture real-life user-LLM interactions, enhancing the relevance of assessment results to real-world LLM usage and thus ecological validity. Second, each item is rated by human subjects based on its similarity to their own thoughts, and correlations between these ratings and the subjects' actual value scores are derived. This psychometrically validated approach ensures that items strongly correlated with specific values serve as reliable items for assessing those values. Through evaluating 27 LLMs with our benchmark, we find that these models prioritize Benevolence, Security, and Self-Direction values while placing less emphasis on Tradition, Power, and Achievement values. Also, our analysis reveals biases in how LLMs perceive various demographic groups, deviating from real human data.