Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

A framework for adaptive and non-adaptive statistical compressive sensing is developed, where a statistical model replaces the standard sparsity model of classical compressive sensing. We propose within this framework optimal task-specific sensing protocols specifically and jointly designed for classification and reconstruction. A two-step adaptive sensing paradigm is developed, where online sensing is applied to detect the signal class in the first step, followed by a reconstruction step adapted to the detected class and the observed samples. The approach is based on information theory, here tailored for Gaussian mixture models (GMMs), where an information-theoretic objective relationship between the sensed signals and a representation of the specific task of interest is maximized. Experimental results using synthetic signals, Landsat satellite attributes, and natural images of different sizes and with different noise levels show the improvements achieved using the proposed framework when compared to more standard sensing protocols. The underlying formulation can be applied beyond GMMs, at the price of higher mathematical and computational complexity.

Via

A framework of online adaptive statistical compressed sensing is introduced for signals following a mixture model. The scheme first uses non-adaptive measurements, from which an online decoding scheme estimates the model selection. As soon as a candidate model has been selected, an optimal sensing scheme for the selected model continues to apply. The final signal reconstruction is calculated from the ensemble of both the non-adaptive and the adaptive measurements. For signals generated from a Gaussian mixture model, the online adaptive sensing algorithm is given and its performance is analyzed. On both synthetic and real image data, the proposed adaptive scheme considerably reduces the average reconstruction error with respect to standard statistical compressed sensing that uses fully random measurements, at a marginally increased computational complexity.

Via

A novel framework of compressed sensing, namely statistical compressed sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution, and achieving accurate reconstruction on average, is introduced. SCS based on Gaussian models is investigated in depth. For signals that follow a single Gaussian model, with Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably smaller than the O(k log(N/k)) required by conventional CS based on sparse models, where N is the signal dimension, and with an optimal decoder implemented via linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the best k-term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional sparsity-oriented CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the best k-term approximation with probability one, and the bound constant can be efficiently calculated. For Gaussian mixture models (GMMs), that assume multiple Gaussian distributions and that each signal follows one of them with an unknown index, a piecewise linear estimator is introduced to decode SCS. The accuracy of model selection, at the heart of the piecewise linear decoder, is analyzed in terms of the properties of the Gaussian distributions and the number of sensing measurements. A maximum a posteriori expectation-maximization algorithm that iteratively estimates the Gaussian models parameters, the signals model selection, and decodes the signals, is presented for GMM-based SCS. In real image sensing applications, GMM-based SCS is shown to lead to improved results compared to conventional CS, at a considerably lower computational cost.

Via

A new framework of compressive sensing (CS), namely statistical compressive sensing (SCS), that aims at efficiently sampling a collection of signals that follow a statistical distribution and achieving accurate reconstruction on average, is introduced. For signals following a Gaussian distribution, with Gaussian or Bernoulli sensing matrices of O(k) measurements, considerably smaller than the O(k log(N/k)) required by conventional CS, where N is the signal dimension, and with an optimal decoder implemented with linear filtering, significantly faster than the pursuit decoders applied in conventional CS, the error of SCS is shown tightly upper bounded by a constant times the k-best term approximation error, with overwhelming probability. The failure probability is also significantly smaller than that of conventional CS. Stronger yet simpler results further show that for any sensing matrix, the error of Gaussian SCS is upper bounded by a constant times the k-best term approximation with probability one, and the bound constant can be efficiently calculated. For signals following Gaussian mixture models, SCS with a piecewise linear decoder is introduced and shown to produce for real images better results than conventional CS based on sparse models.

Via

A general framework based on Gaussian models and a MAP-EM algorithm is introduced in this paper for solving matrix/table completion problems. The numerical experiments with the standard and challenging movie ratings data show that the proposed approach, based on probably one of the simplest probabilistic models, leads to the results in the same ballpark as the state-of-the-art, at a lower computational cost.

Via

A general framework for solving image inverse problems is introduced in this paper. The approach is based on Gaussian mixture models, estimated via a computationally efficient MAP-EM algorithm. A dual mathematical interpretation of the proposed framework with structured sparse estimation is described, which shows that the resulting piecewise linear estimate stabilizes the estimation when compared to traditional sparse inverse problem techniques. This interpretation also suggests an effective dictionary motivated initialization for the MAP-EM algorithm. We demonstrate that in a number of image inverse problems, including inpainting, zooming, and deblurring, the same algorithm produces either equal, often significantly better, or very small margin worse results than the best published ones, at a lower computational cost.

Via

Time-frequency representations of audio signals often resemble texture images. This paper derives a simple audio classification algorithm based on treating sound spectrograms as texture images. The algorithm is inspired by an earlier visual classification scheme particularly efficient at classifying textures. While solely based on time-frequency texture features, the algorithm achieves surprisingly good performance in musical instrument classification experiments.

Via

Distributed synchronization is known to occur at several scales in the brain, and has been suggested as playing a key functional role in perceptual grouping. State-of-the-art visual grouping algorithms, however, seem to give comparatively little attention to neural synchronization analogies. Based on the framework of concurrent synchronization of dynamic systems, simple networks of neural oscillators coupled with diffusive connections are proposed to solve visual grouping problems. Multi-layer algorithms and feedback mechanisms are also studied. The same algorithm is shown to achieve promising results on several classical visual grouping problems, including point clustering, contour integration and image segmentation.

Via

We investigate a biologically motivated approach to fast visual classification, directly inspired by the recent work of Serre et al. Specifically, trading-off biological accuracy for computational efficiency, we explore using wavelet and grouplet-like transforms to parallel the tuning of visual cortex V1 and V2 cells, alternated with max operations to achieve scale and translation invariance. A feature selection procedure is applied during learning to accelerate recognition. We introduce a simple attention-like feedback mechanism, significantly improving recognition and robustness in multiple-object scenes. In experiments, the proposed algorithm achieves or exceeds state-of-the-art success rate on object recognition, texture and satellite image classification, language identification and sound classification.

Via