Abstract:Existing 3D human motion generation and understanding methods often exhibit limited interpretability, restricting effective mutual enhancement between these inherently related tasks. While current unified frameworks based on large language models (LLMs) leverage linguistic priors, they frequently encounter challenges in semantic alignment and task coherence. Moreover, the next-token prediction paradigm in LLMs is ill-suited for motion sequences, causing cumulative prediction errors. To address these limitations, we propose UniMo, a novel framework that integrates motion-language information and interpretable chain of thought (CoT) reasoning into the LLM via supervised fine-tuning (SFT). We further introduce reinforcement learning with Group Relative Policy Optimization (GRPO) as a post-training strategy that optimizes over groups of tokens to enforce structural correctness and semantic alignment, mitigating cumulative errors in motion token prediction. Extensive experiments demonstrate that UniMo significantly outperforms existing unified and task-specific models, achieving state-of-the-art performance in both motion generation and understanding.
Abstract:Despite recent advances in 3D human motion generation (MoGen) on standard benchmarks, existing models still face a fundamental bottleneck in their generalization capability. In contrast, adjacent generative fields, most notably video generation (ViGen), have demonstrated remarkable generalization in modeling human behaviors, highlighting transferable insights that MoGen can leverage. Motivated by this observation, we present a comprehensive framework that systematically transfers knowledge from ViGen to MoGen across three key pillars: data, modeling, and evaluation. First, we introduce ViMoGen-228K, a large-scale dataset comprising 228,000 high-quality motion samples that integrates high-fidelity optical MoCap data with semantically annotated motions from web videos and synthesized samples generated by state-of-the-art ViGen models. The dataset includes both text-motion pairs and text-video-motion triplets, substantially expanding semantic diversity. Second, we propose ViMoGen, a flow-matching-based diffusion transformer that unifies priors from MoCap data and ViGen models through gated multimodal conditioning. To enhance efficiency, we further develop ViMoGen-light, a distilled variant that eliminates video generation dependencies while preserving strong generalization. Finally, we present MBench, a hierarchical benchmark designed for fine-grained evaluation across motion quality, prompt fidelity, and generalization ability. Extensive experiments show that our framework significantly outperforms existing approaches in both automatic and human evaluations. The code, data, and benchmark will be made publicly available.