Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:Bounds on the smallest eigenvalue of the neural tangent kernel (NTK) are a key ingredient in the analysis of neural network optimization and memorization. However, existing results require distributional assumptions on the data and are limited to a high-dimensional setting, where the input dimension $d_0$ scales at least logarithmically in the number of samples $n$. In this work we remove both of these requirements and instead provide bounds in terms of a measure of the collinearity of the data: notably these bounds hold with high probability even when $d_0$ is held constant versus $n$. We prove our results through a novel application of the hemisphere transform.

Via

Abstract:Kakade's natural policy gradient method has been studied extensively in the last years showing linear convergence with and without regularization. We study another natural gradient method which is based on the Fisher information matrix of the state-action distributions and has received little attention from the theoretical side. Here, the state-action distributions follow the Fisher-Rao gradient flow inside the state-action polytope with respect to a linear potential. Therefore, we study Fisher-Rao gradient flows of linear programs more generally and show linear convergence with a rate that depends on the geometry of the linear program. Equivalently, this yields an estimate on the error induced by entropic regularization of the linear program which improves existing results. We extend these results and show sublinear convergence for perturbed Fisher-Rao gradient flows and natural gradient flows up to an approximation error. In particular, these general results cover the case of state-action natural policy gradients.

Via

Abstract:We consider a binary classifier defined as the sign of a tropical rational function, that is, as the difference of two convex piecewise linear functions. The parameter space of ReLU neural networks is contained as a semialgebraic set inside the parameter space of tropical rational functions. We initiate the study of two different subdivisions of this parameter space: a subdivision into semialgebraic sets, on which the combinatorial type of the decision boundary is fixed, and a subdivision into a polyhedral fan, capturing the combinatorics of the partitions of the dataset. The sublevel sets of the 0/1-loss function arise as subfans of this classification fan, and we show that the level-sets are not necessarily connected. We describe the classification fan i) geometrically, as normal fan of the activation polytope, and ii) combinatorially through a list of properties of associated bipartite graphs, in analogy to covector axioms of oriented matroids and tropical oriented matroids. Our findings extend and refine the connection between neural networks and tropical geometry by observing structures established in real tropical geometry, such as positive tropicalizations of hypersurfaces and tropical semialgebraic sets.

Via

Abstract:The problem of benign overfitting asks whether it is possible for a model to perfectly fit noisy training data and still generalize well. We study benign overfitting in two-layer leaky ReLU networks trained with the hinge loss on a binary classification task. We consider input data which can be decomposed into the sum of a common signal and a random noise component, which lie on subspaces orthogonal to one another. We characterize conditions on the signal to noise ratio (SNR) of the model parameters giving rise to benign versus non-benign, or harmful, overfitting: in particular, if the SNR is high then benign overfitting occurs, conversely if the SNR is low then harmful overfitting occurs. We attribute both benign and non-benign overfitting to an approximate margin maximization property and show that leaky ReLU networks trained on hinge loss with Gradient Descent (GD) satisfy this property. In contrast to prior work we do not require near orthogonality conditions on the training data: notably, for input dimension $d$ and training sample size $n$, while prior work shows asymptotically optimal error when $d = \Omega(n^2 \log n)$, here we require only $d = \Omega\left(n \log \frac{1}{\epsilon}\right)$ to obtain error within $\epsilon$ of optimal.

Via

Abstract:We study the loss landscape of two-layer mildly overparameterized ReLU neural networks on a generic finite input dataset for the squared error loss. Our approach involves bounding the dimension of the sets of local and global minima using the rank of the Jacobian of the parameterization map. Using results on random binary matrices, we show most activation patterns correspond to parameter regions with no bad differentiable local minima. Furthermore, for one-dimensional input data, we show most activation regions realizable by the network contain a high dimensional set of global minima and no bad local minima. We experimentally confirm these results by finding a phase transition from most regions having full rank to many regions having deficient rank depending on the amount of overparameterization.

Via

Abstract:We study the geometry of linear networks with one-dimensional convolutional layers. The function spaces of these networks can be identified with semi-algebraic families of polynomials admitting sparse factorizations. We analyze the impact of the network's architecture on the function space's dimension, boundary, and singular points. We also describe the critical points of the network's parameterization map. Furthermore, we study the optimization problem of training a network with the squared error loss. We prove that for architectures where all strides are larger than one and generic data, the non-zero critical points of that optimization problem are smooth interior points of the function space. This property is known to be false for dense linear networks and linear convolutional networks with stride one.

Via

Abstract:We consider a deep matrix factorization model of covariance matrices trained with the Bures-Wasserstein distance. While recent works have made important advances in the study of the optimization problem for overparametrized low-rank matrix approximation, much emphasis has been placed on discriminative settings and the square loss. In contrast, our model considers another interesting type of loss and connects with the generative setting. We characterize the critical points and minimizers of the Bures-Wasserstein distance over the space of rank-bounded matrices. For low-rank matrices the Hessian of this loss can theoretically blow up, which creates challenges to analyze convergence of optimizaton methods. We establish convergence results for gradient flow using a smooth perturbative version of the loss and convergence results for finite step size gradient descent under certain assumptions on the initial weights.

Via

Abstract:We study the gradients of a maxout network with respect to inputs and parameters and obtain bounds for the moments depending on the architecture and the parameter distribution. We observe that the distribution of the input-output Jacobian depends on the input, which complicates a stable parameter initialization. Based on the moments of the gradients, we formulate parameter initialization strategies that avoid vanishing and exploding gradients in wide networks. Experiments with deep fully-connected and convolutional networks show that this strategy improves SGD and Adam training of deep maxout networks. In addition, we obtain refined bounds on the expected number of linear regions, results on the expected curve length distortion, and results on the NTK.

Via

Abstract:We study the convergence of several natural policy gradient (NPG) methods in infinite-horizon discounted Markov decision processes with regular policy parametrizations. For a variety of NPGs and reward functions we show that the trajectories in state-action space are solutions of gradient flows with respect to Hessian geometries, based on which we obtain global convergence guarantees and convergence rates. In particular, we show linear convergence for unregularized and regularized NPG flows with the metrics proposed by Kakade and Morimura and co-authors by observing that these arise from the Hessian geometries of conditional entropy and entropy respectively. Further, we obtain sublinear convergence rates for Hessian geometries arising from other convex functions like log-barriers. Finally, we interpret the discrete-time NPG methods with regularized rewards as inexact Newton methods if the NPG is defined with respect to the Hessian geometry of the regularizer. This yields local quadratic convergence rates of these methods for step size equal to the penalization strength.

Via

Authors:Laura Escobar, Patricio Gallardo, Javier González-Anaya, José L. González, Guido Montúfar, Alejandro H. Morales

Figures and Tables:

Abstract:We investigate the combinatorics of max-pooling layers, which are functions that downsample input arrays by taking the maximum over shifted windows of input coordinates, and which are commonly used in convolutional neural networks. We obtain results on the number of linearity regions of these functions by equivalently counting the number of vertices of certain Minkowski sums of simplices. We characterize the faces of such polytopes and obtain generating functions and closed formulas for the number of vertices and facets in a 1D max-pooling layer depending on the size of the pooling windows and stride, and for the number of vertices in a special case of 2D max-pooling.

Via