Abstract:Large Language Model (LLM)-based agents employ external and internal memory systems to handle complex, goal-oriented tasks, yet this exposes them to severe extraction attacks, and effective defenses remain lacking. In this paper, we propose MemPot, the first theoretically verified defense framework against memory extraction attacks by injecting optimized honeypots into the memory. Through a two-stage optimization process, MemPot generates trap documents that maximize the retrieval probability for attackers while remaining inconspicuous to benign users. We model the detection process as Wald's Sequential Probability Ratio Test (SPRT) and theoretically prove that MemPot achieves a lower average number of sampling rounds compared to optimal static detectors. Empirically, MemPot significantly outperforms state-of-the-art baselines, achieving a 50% improvement in detection AUROC and an 80% increase in True Positive Rate under low False Positive Rate constraints. Furthermore, our experiments confirm that MemPot incurs zero additional online inference latency and preserves the agent's utility on standard tasks, verifying its superiority in safety, harmlessness, and efficiency.
Abstract:Large-scale models pre-trained on Electroencephalography (EEG) have shown promise in clinical applications such as neurological disorder detection. However, the practical deployment of EEG-based large-scale models faces critical challenges such as limited labeled EEG data and suboptimal performance in clinical scenarios. To address these issues, we propose NeuroDx-LM, a novel large-scale model specifically designed for detecting EEG-based neurological disorders. Our key contributions include (i) a Selective Temporal-Frequency Embedding mechanism that adaptively captures complex temporal and spectral patterns in EEG signals; and (ii) a Progressive Feature-Aware Training strategy that refines feature representation in a two-stage process. In the first stage, our model learns the fundamental discriminative features of EEG activities; in the second stage, the model further extracts more specialized fine-grained features for accurate diagnostic performance. We evaluated NeuroDx-LM on the CHB-MIT and Schizophrenia datasets, achieving state-of-the-art performance in EEG-based seizure and schizophrenia detection, respectively. These results demonstrate the great potential of EEG-based large-scale models to advance clinical applicability. Our code is available at https://github.com/LetItBe12345/NeuroDx-LM.