Abstract:Large-scale models pre-trained on Electroencephalography (EEG) have shown promise in clinical applications such as neurological disorder detection. However, the practical deployment of EEG-based large-scale models faces critical challenges such as limited labeled EEG data and suboptimal performance in clinical scenarios. To address these issues, we propose NeuroDx-LM, a novel large-scale model specifically designed for detecting EEG-based neurological disorders. Our key contributions include (i) a Selective Temporal-Frequency Embedding mechanism that adaptively captures complex temporal and spectral patterns in EEG signals; and (ii) a Progressive Feature-Aware Training strategy that refines feature representation in a two-stage process. In the first stage, our model learns the fundamental discriminative features of EEG activities; in the second stage, the model further extracts more specialized fine-grained features for accurate diagnostic performance. We evaluated NeuroDx-LM on the CHB-MIT and Schizophrenia datasets, achieving state-of-the-art performance in EEG-based seizure and schizophrenia detection, respectively. These results demonstrate the great potential of EEG-based large-scale models to advance clinical applicability. Our code is available at https://github.com/LetItBe12345/NeuroDx-LM.
Abstract:We examined whether embedding human attention knowledge into saliency-based explainable AI (XAI) methods for computer vision models could enhance their plausibility and faithfulness. We first developed new gradient-based XAI methods for object detection models to generate object-specific explanations by extending the current methods for image classification models. Interestingly, while these gradient-based methods worked well for explaining image classification models, when being used for explaining object detection models, the resulting saliency maps generally had lower faithfulness than human attention maps when performing the same task. We then developed Human Attention-Guided XAI (HAG-XAI) to learn from human attention how to best combine explanatory information from the models to enhance explanation plausibility by using trainable activation functions and smoothing kernels to maximize XAI saliency map's similarity to human attention maps. While for image classification models, HAG-XAI enhanced explanation plausibility at the expense of faithfulness, for object detection models it enhanced plausibility and faithfulness simultaneously and outperformed existing methods. The learned functions were model-specific, well generalizable to other databases.