Abstract:Existing value-based online reinforcement learning (RL) algorithms suffer from slow policy exploitation due to ineffective exploration and delayed policy updates. To address these challenges, we propose an algorithm called Instant Retrospect Action (IRA). Specifically, we propose Q-Representation Discrepancy Evolution (RDE) to facilitate Q-network representation learning, enabling discriminative representations for neighboring state-action pairs. In addition, we adopt an explicit method to policy constraints by enabling Greedy Action Guidance (GAG). This is achieved through backtracking historical actions, which effectively enhances the policy update process. Our proposed method relies on providing the learning algorithm with accurate $k$-nearest-neighbor action value estimates and learning to design a fast-adaptable policy through policy constraints. We further propose the Instant Policy Update (IPU) mechanism, which enhances policy exploitation by systematically increasing the frequency of policy updates. We further discover that the early-stage training conservatism of the IRA method can alleviate the overestimation bias problem in value-based RL. Experimental results show that IRA can significantly improve the learning efficiency and final performance of online RL algorithms on eight MuJoCo continuous control tasks.
Abstract:Face Attribute Recognition (FAR) plays a crucial role in applications such as person re-identification, face retrieval, and face editing. Conventional multi-task attribute recognition methods often process the entire feature map for feature extraction and attribute classification, which can produce redundant features due to reliance on global regions. To address these challenges, we propose a novel approach emphasizing the selection of specific feature regions for efficient feature learning. We introduce the Mask-Guided Multi-Task Network (MGMTN), which integrates Adaptive Mask Learning (AML) and Group-Global Feature Fusion (G2FF) to address the aforementioned limitations. Leveraging a pre-trained keypoint annotation model and a fully convolutional network, AML accurately localizes critical facial parts (e.g., eye and mouth groups) and generates group masks that delineate meaningful feature regions, thereby mitigating negative transfer from global region usage. Furthermore, G2FF combines group and global features to enhance FAR learning, enabling more precise attribute identification. Extensive experiments on two challenging facial attribute recognition datasets demonstrate the effectiveness of MGMTN in improving FAR performance.
Abstract:To enhance the generalization performance of Multi-Task Networks (MTN) in Face Attribute Recognition (FAR), it is crucial to share relevant information across multiple related prediction tasks effectively. Traditional MTN methods create shared low-level modules and distinct high-level modules, causing an exponential increase in model parameters with the addition of tasks. This approach also limits feature interaction at the high level, hindering the exploration of semantic relations among attributes, thereby affecting generalization negatively. In response, this study introduces FAR-AMTN, a novel Attention Multi-Task Network for FAR. It incorporates a Weight-Shared Group-Specific Attention (WSGSA) module with shared parameters to minimize complexity while improving group feature representation. Furthermore, a Cross-Group Feature Fusion (CGFF) module is utilized to foster interactions between attribute groups, enhancing feature learning. A Dynamic Weighting Strategy (DWS) is also introduced for synchronized task convergence. Experiments on the CelebA and LFWA datasets demonstrate that the proposed FAR-AMTN demonstrates superior accuracy with significantly fewer parameters compared to existing models.