Abstract:Large Language Models demonstrate strong reasoning and generation abilities, yet their behavior in multi-turn tasks often lacks reliability and verifiability. We present a task completion framework that enables LLM-based agents to act under explicit behavioral guidance in environments described by reinforcement learning formalisms with defined observation, action, and reward signals. The framework integrates three components: a lightweight task profiler that selects reasoning and generation strategies, a reasoning module that learns verifiable observation - action mappings, and a generation module that enforces constraint-compliant outputs through validation or deterministic synthesis. We show that as the agent interacts with the environment, these components co-evolve, yielding trustworthy behavior.
Abstract:In autonomous driving tasks, scene understanding is the first step towards predicting the future behavior of the surrounding traffic participants. Yet, how to represent a given scene and extract its features are still open research questions. In this study, we propose a novel text-based representation of traffic scenes and process it with a pre-trained language encoder. First, we show that text-based representations, combined with classical rasterized image representations, lead to descriptive scene embeddings. Second, we benchmark our predictions on the nuScenes dataset and show significant improvements compared to baselines. Third, we show in an ablation study that a joint encoder of text and rasterized images outperforms the individual encoders confirming that both representations have their complementary strengths.