Abstract:Reconfigurable intelligent surfaces (RISs) have emerged as a key technology for shaping smart wireless environments in next-generation wireless communication systems. To support the large-scale deployment of RISs, a reliable and efficient diagnostic method is essential to ensure optimal performance. In this work, a robust and efficient approach for RIS diagnostics is proposed using a space-time coding strategy with orthogonal codes. The method encodes the reflected signals from individual RIS elements into distinct code channels, enabling the recovery of channel power at the receiving terminals for fault identification. Theoretical analysis shows that the normally functioning elements generate high power in their respective code channels, whereas the faulty elements exhibit significantly lower power. This distinction enables rapid and accurate diagnostics of elements' operational states through simple signal processing techniques. Simulation results validate the effectiveness of the proposed method, even under high fault ratios and varying reception angles. Proof-of-principle experiments on two RIS prototypes are conducted, implementing two coding strategies: direct and segmented. Experimental results in a realistic scenario confirm the reliability of the diagnostic method, demonstrating its potential for large-scale RIS deployment in future wireless communication systems and radar applications.
Abstract:In [1], the authors have recently introduced a circuits-based approach for modeling the mutual coupling of reconfigurable surfaces, which comprise sub-wavelength spaced passive scattering elements coupled with electronic circuits for enabling the reconfiguration of the surface. The approach is based on a finite-length discrete dipole representation of a reconfigurable surface, and on the assumption that the current distribution on each thin wire dipole is a sinusoidal function. Under these assumptions, the voltages at the ports of a multi-antenna receiver can be formulated in terms of the voltage generators at a multi-antenna transmitter through a transfer function matrix that explicitly depends on the mutual coupling and the tuning circuits through the mutual impedances between every pair of thin wire dipoles. In [1], the mutual impedances are formulated in an integral form. In this paper, we show that the mutual impedances can be formulated in a closed-form expression in terms of exponential integral functions.
Abstract:Reconfigurable intelligent surface (RIS) is an emerging technology that is under investigation for different applications in wireless communications. RISs are often analyzed and optimized by considering simplified electromagnetic reradiation models. In this chapter, we aim to study the impact of realistic reradiation models for RISs as a function of the sub-wavelength inter-distance between nearby elements of the RIS, the quantization levels of the reflection coefficients, the interplay between the amplitude and phase of the reflection coefficients, and the presence of electromagnetic interference. We consider both case studies in which the users may be located in the far-field and near-field regions of an RIS. Our study shows that, due to design constraints, such as the need of using quantized reflection coefficients or the inherent interplay between the phase and the amplitude of the reflection coefficients, an RIS may reradiate power towards unwanted directions that depend on the intended and interfering electromagnetic waves. Therefore, it is in general important to optimize an RIS by considering the entire reradiation pattern by design to maximize the reradiated power towards the desired directions of reradiation while keeping the power reradiated towards other unwanted directions at a low level. Our study shows that a 2-bit digitally controllable RIS with an almost constant reflection amplitude as a function of the applied phase shift, and whose scattering elements have a size and an inter-distance between (1/8)th and (1/4)th of the signal wavelength may be a good tradeoff between performance, implementation complexity and cost. However, the presented results are preliminary and pave the way for further research into the performance of RISs based on accurate and realistic electromagnetic reradiation models.