Abstract:Recovering a continuous colormap from a single 2D scalar field visualization can be quite challenging, especially in the absence of a corresponding color legend. In this paper, we propose a novel colormap recovery approach that extracts the colormap from a color-encoded 2D scalar field visualization by simultaneously predicting the colormap and underlying data using a decoupling-and-reconstruction strategy. Our approach first separates the input visualization into colormap and data using a decoupling module, then reconstructs the visualization with a differentiable color-mapping module. To guide this process, we design a reconstruction loss between the input and reconstructed visualizations, which serves both as a constraint to ensure strong correlation between colormap and data during training, and as a self-supervised optimizer for fine-tuning the predicted colormap of unseen visualizations during inferencing. To ensure smoothness and correct color ordering in the extracted colormap, we introduce a compact colormap representation using cubic B-spline curves and an associated color order loss. We evaluate our method quantitatively and qualitatively on a synthetic dataset and a collection of real-world visualizations from the VIS30K dataset. Additionally, we demonstrate its utility in two prototype applications -- colormap adjustment and colormap transfer -- and explore its generalization to visualizations with color legends and ones encoded using discrete color palettes.
Abstract:LLMs are tuned to follow instructions (aligned) by learning which of two outputs users prefer for a prompt. However, this preference data format does not convey why users prefer responses that are chosen or rejected, so LLMs trained on these datasets cannot tailor responses to varied user needs. To surface these parameters of personalization, we apply abductive reasoning to preference data, inferring needs and interests of users, i.e. personas, that may prefer each output. We test this idea in two steps: Persona Inference (PI)-abductively inferring personas of users who prefer chosen or rejected outputs-and Persona Tailoring (PT)-training models to tailor responses to personas from PI. We find: 1) LLMs infer personas accurately explaining why different users may prefer both chosen or rejected outputs; 2) Training on preference data augmented with PI personas via PT boosts personalization, enabling models to support user-written personas; and 3) Rejected response personas form harder personalization evaluations, showing PT better aids users with uncommon preferences versus typical alignment methods. We argue for an abductive view of preferences for personalization, asking not only which response is better but when, why, and for whom.