Abstract:Channel-state information (CSI)-based sensing will play a key role in future cellular systems. However, no CSI dataset has been published from a real-world 5G NR system that facilitates the development and validation of suitable sensing algorithms. To close this gap, we publish three real-world wideband multi-antenna multi-open RAN radio unit (O-RU) CSI datasets from the 5G NR uplink channel: an indoor lab/office room dataset, an outdoor campus courtyard dataset, and a device classification dataset with six commercial-off-the-shelf (COTS) user equipments (UEs). These datasets have been recorded using a software-defined 5G NR testbed based on NVIDIA Aerial RAN CoLab Over-the-Air (ARC-OTA) with COTS hardware, which we have deployed at ETH Zurich. We demonstrate the utility of these datasets for three CSI-based sensing tasks: neural UE positioning, channel charting in real-world coordinates, and closed-set device classification. For all these tasks, our results show high accuracy: neural UE positioning achieves 0.6cm (indoor) and 5.7cm (outdoor) mean absolute error, channel charting in real-world coordinates achieves 73cm mean absolute error (outdoor), and device classification achieves 99% (same day) and 95% (next day) accuracy. The CSI datasets, ground-truth UE position labels, CSI features, and simulation code are publicly available at https://caez.ethz.ch
Abstract:Channel charting (CC) is a self-supervised positioning technique whose main limitation is that the estimated positions lie in an arbitrary coordinate system that is not aligned with true spatial coordinates. In this work, we propose a novel method to produce CC locations in true spatial coordinates with the aid of a digital twin (DT). Our main contribution is a new framework that (i) extracts large-scale channel-state information (CSI) features from estimated CSI and the DT and (ii) matches these features with a cosine-similarity loss function. The DT-aided loss function is then combined with a conventional CC loss to learn a positioning function that provides true spatial coordinates without relying on labeled data. Our results for a simulated indoor scenario demonstrate that the proposed framework reduces the relative mean distance error by 29% compared to the state of the art. We also show that the proposed approach is robust to DT modeling mismatches and a distribution shift in the testing data.
Abstract:We propose a software-defined testbed for Wi-Fi channel-state information (CSI) acquisition. This testbed features distributed software-defined radios (SDRs) and a custom IEEE 802.11a software stack that enables the passive collection of CSI data from commercial off-the-shelf (COTS) devices that connect to an existing Wi-Fi network. Unlike commodity Wi-Fi sniffers or channel sounders, our software-defined testbed enables a quick exploration of advanced CSI estimation algorithms in real-world scenarios from naturally-generated Wi-Fi traffic. We explore the effectiveness of two advanced algorithms that denoise CSI estimates, and we demonstrate that CSI-based positioning of COTS Wi-Fi devices with a multilayer perceptron is feasible in an indoor office/lab space in which people are moving.