Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Picture for Francisco Villaescusa-Navarro

Francisco Villaescusa-Navarro

Simple lessons from complex learning: what a neural network model learns about cosmic structure formation



Drew Jamieson , Yin Li , Siyu He , Francisco Villaescusa-Navarro , Shirley Ho , Renan Alves de Oliveira , David N. Spergel

* 13 pages, 8 figures 

   Access Paper or Ask Questions

Field Level Neural Network Emulator for Cosmological N-body Simulations



Drew Jamieson , Yin Li , Renan Alves de Oliveira , Francisco Villaescusa-Navarro , Shirley Ho , David N. Spergel

* 11 pages, 4 figures 

   Access Paper or Ask Questions

Fast and realistic large-scale structure from machine-learning-augmented random field simulations



Davide Piras , Benjamin Joachimi , Francisco Villaescusa-Navarro

* 13 pages, 7 figures, comments welcome 

   Access Paper or Ask Questions

Learning cosmology and clustering with cosmic graphs



Pablo Villanueva-Domingo , Francisco Villaescusa-Navarro

* 21 pages, 8 figures, code publicly available at https://github.com/PabloVD/CosmoGraphNet 

   Access Paper or Ask Questions

Machine Learning and Cosmology



Cora Dvorkin , Siddharth Mishra-Sharma , Brian Nord , V. Ashley Villar , Camille Avestruz , Keith Bechtol , Aleksandra Ćiprijanović , Andrew J. Connolly , Lehman H. Garrison , Gautham Narayan , Francisco Villaescusa-Navarro

* Contribution to Snowmass 2021. 32 pages 

   Access Paper or Ask Questions

Augmenting astrophysical scaling relations with machine learning : application to reducing the SZ flux-mass scatter



Digvijay Wadekar , Leander Thiele , Francisco Villaescusa-Navarro , J. Colin Hill , Miles Cranmer , David N. Spergel , Nicholas Battaglia , Daniel Anglés-Alcázar , Lars Hernquist , Shirley Ho

* Minor updates to Figs. 4 & 8. Added Fig.10. The code and data associated with this paper are available at https://github.com/JayWadekar/ScalingRelations_ML 

   Access Paper or Ask Questions

The CAMELS project: public data release



Francisco Villaescusa-Navarro , Shy Genel , Daniel Anglés-Alcázar , Lucia A. Perez , Pablo Villanueva-Domingo , Digvijay Wadekar , Helen Shao , Faizan G. Mohammad , Sultan Hassan , Emily Moser , Erwin T. Lau , Luis Fernando Machado Poletti Valle , Andrina Nicola , Leander Thiele , Yongseok Jo , Oliver H. E. Philcox , Benjamin D. Oppenheimer , Megan Tillman , ChangHoon Hahn , Neerav Kaushal , Alice Pisani , Matthew Gebhardt , Ana Maria Delgado , Joyce Caliendo , Christina Kreisch , Kaze W. K. Wong , William R. Coulton , Michael Eickenberg , Gabriele Parimbelli , Yueying Ni , Ulrich P. Steinwandel , Valentina La Torre , Romeel Dave , Nicholas Battaglia , Daisuke Nagai , David N. Spergel , Lars Hernquist , Blakesley Burkhart , Desika Narayanan , Benjamin Wandelt , Rachel S. Somerville , Greg L. Bryan , Matteo Viel , Yin Li , Vid Irsic , Katarina Kraljic , Mark Vogelsberger

* 18 pages, 3 figures. More than 350 Tb of data from thousands of simulations publicly available at https://www.camel-simulations.org 

   Access Paper or Ask Questions

1
2
3
>>