Abstract:We present a fully decentralized routing framework for multi-robot exploration missions operating under the constraints of a Lunar Delay-Tolerant Network (LDTN). In this setting, autonomous rovers must relay collected data to a lander under intermittent connectivity and unknown mobility patterns. We formulate the problem as a Partially Observable Markov Decision Problem (POMDP) and propose a Graph Attention-based Multi-Agent Reinforcement Learning (GAT-MARL) policy that performs Centralized Training, Decentralized Execution (CTDE). Our method relies only on local observations and does not require global topology updates or packet replication, unlike classical approaches such as shortest path and controlled flooding-based algorithms. Through Monte Carlo simulations in randomized exploration environments, GAT-MARL provides higher delivery rates, no duplications, and fewer packet losses, and is able to leverage short-term mobility forecasts; offering a scalable solution for future space robotic systems for planetary exploration, as demonstrated by successful generalization to larger rover teams.
Abstract:This paper introduces a full solution for decentralized routing in Low Earth Orbit satellite constellations based on continual Deep Reinforcement Learning (DRL). This requires addressing multiple challenges, including the partial knowledge at the satellites and their continuous movement, and the time-varying sources of uncertainty in the system, such as traffic, communication links, or communication buffers. We follow a multi-agent approach, where each satellite acts as an independent decision-making agent, while acquiring a limited knowledge of the environment based on the feedback received from the nearby agents. The solution is divided into two phases. First, an offline learning phase relies on decentralized decisions and a global Deep Neural Network (DNN) trained with global experiences. Then, the online phase with local, on-board, and pre-trained DNNs requires continual learning to evolve with the environment, which can be done in two different ways: (1) Model anticipation, where the predictable conditions of the constellation are exploited by each satellite sharing local model with the next satellite; and (2) Federated Learning (FL), where each agent's model is merged first at the cluster level and then aggregated in a global Parameter Server. The results show that, without high congestion, the proposed Multi-Agent DRL framework achieves the same E2E performance as a shortest-path solution, but the latter assumes intensive communication overhead for real-time network-wise knowledge of the system at a centralized node, whereas ours only requires limited feedback exchange among first neighbour satellites. Importantly, our solution adapts well to congestion conditions and exploits less loaded paths. Moreover, the divergence of models over time is easily tackled by the synergy between anticipation, applied in short-term alignment, and FL, utilized for long-term alignment.
Abstract:This paper introduces a Multi-Agent Deep Reinforcement Learning (MA-DRL) approach for routing in Low Earth Orbit Satellite Constellations (LSatCs). Each satellite is an independent decision-making agent with a partial knowledge of the environment, and supported by feedback received from the nearby agents. Building on our previous work that introduced a Q-routing solution, the contribution of this paper is to extend it to a deep learning framework able to quickly adapt to the network and traffic changes, and based on two phases: (1) An offline exploration learning phase that relies on a global Deep Neural Network (DNN) to learn the optimal paths at each possible position and congestion level; (2) An online exploitation phase with local, on-board, pre-trained DNNs. Results show that MA-DRL efficiently learns optimal routes offline that are then loaded for an efficient distributed routing online.