Abstract:Designing a 6G-oriented universal model capable of processing multi-modal data and executing diverse air interface tasks has emerged as a common goal in future wireless systems. Building on our prior work in communication multi-modal alignment and telecom large language model (LLM), we propose a scalable, task-aware artificial intelligence-air interface multi-modal universal model (AI2MMUM), which flexibility and effectively perform various physical layer tasks according to subtle task instructions. The LLM backbone provides robust contextual comprehension and generalization capabilities, while a fine-tuning approach is adopted to incorporate domain-specific knowledge. To enhance task adaptability, task instructions consist of fixed task keywords and learnable, implicit prefix prompts. Frozen radio modality encoders extract universal representations and adapter layers subsequently bridge radio and language modalities. Moreover, lightweight task-specific heads are designed to directly output task objectives. Comprehensive evaluations demonstrate that AI2MMUM achieves SOTA performance across five representative physical environment/wireless channel-based downstream tasks using the WAIR-D and DeepMIMO datasets.
Abstract:Recent advancements in visual speech recognition (VSR) have promoted progress in lip-to-speech synthesis, where pre-trained VSR models enhance the intelligibility of synthesized speech by providing valuable semantic information. The success achieved by cascade frameworks, which combine pseudo-VSR with pseudo-text-to-speech (TTS) or implicitly utilize the transcribed text, highlights the benefits of leveraging VSR models. However, these methods typically rely on mel-spectrograms as an intermediate representation, which may introduce a key bottleneck: the domain gap between synthetic mel-spectrograms, generated from inherently error-prone lip-to-speech mappings, and real mel-spectrograms used to train vocoders. This mismatch inevitably degrades synthesis quality. To bridge this gap, we propose Natural Lip-to-Speech (NaturalL2S), an end-to-end framework integrating acoustic inductive biases with differentiable speech generation components. Specifically, we introduce a fundamental frequency (F0) predictor to capture prosodic variations in synthesized speech. The predicted F0 then drives a Differentiable Digital Signal Processing (DDSP) synthesizer to generate a coarse signal which serves as prior information for subsequent speech synthesis. Additionally, instead of relying on a reference speaker embedding as an auxiliary input, our approach achieves satisfactory performance on speaker similarity without explicitly modelling speaker characteristics. Both objective and subjective evaluation results demonstrate that NaturalL2S can effectively enhance the quality of the synthesized speech when compared to state-of-the-art methods. Our demonstration page is accessible at https://yifan-liang.github.io/NaturalL2S/.