Abstract:The conceptual design phase in architecture and urban planning, particularly building massing, is complex and heavily reliant on designer intuition and manual effort. To address this, we propose an automated framework for generating building massing based on functional requirements and site context. A primary obstacle to such data-driven methods has been the lack of suitable datasets. Consequently, we introduce the CoMa-20K dataset, a comprehensive collection that includes detailed massing geometries, associated economical and programmatic data, and visual representations of the development site within its existing urban context. We benchmark this dataset by formulating massing generation as a conditional task for Vision-Language Models (VLMs), evaluating both fine-tuned and large zero-shot models. Our experiments reveal the inherent complexity of the task while demonstrating the potential of VLMs to produce context-sensitive massing options. The dataset and analysis establish a foundational benchmark and highlight significant opportunities for future research in data-driven architectural design.
Abstract:While Retrieval-Augmented Generation (RAG) methods commonly draw information from unstructured documents, the emerging paradigm of GraphRAG aims to leverage structured data such as knowledge graphs. Most existing GraphRAG efforts focus on Resource Description Framework (RDF) knowledge graphs, relying on triple representations and SPARQL queries. However, the potential of Cypher and Labeled Property Graph (LPG) databases to serve as scalable and effective reasoning engines within GraphRAG pipelines remains underexplored in current research literature. To fill this gap, we propose Multi-Agent GraphRAG, a modular LLM agentic system for text-to-Cypher query generation serving as a natural language interface to LPG-based graph data. Our proof-of-concept system features an LLM-based workflow for automated Cypher queries generation and execution, using Memgraph as the graph database backend. Iterative content-aware correction and normalization, reinforced by an aggregated feedback loop, ensures both semantic and syntactic refinement of generated queries. We evaluate our system on the CypherBench graph dataset covering several general domains with diverse types of queries. In addition, we demonstrate performance of the proposed workflow on a property graph derived from the IFC (Industry Foundation Classes) data, representing a digital twin of a building. This highlights how such an approach can bridge AI with real-world applications at scale, enabling industrial digital automation use cases.