Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Enric Boix-Adsera

Distillation is the task of replacing a complicated machine learning model with a simpler model that approximates the original [BCNM06,HVD15]. Despite many practical applications, basic questions about the extent to which models can be distilled, and the runtime and amount of data needed to distill, remain largely open. To study these questions, we initiate a general theory of distillation, defining PAC-distillation in an analogous way to PAC-learning [Val84]. As applications of this theory: (1) we propose new algorithms to extract the knowledge stored in the trained weights of neural networks -- we show how to efficiently distill neural networks into succinct, explicit decision tree representations when possible by using the ``linear representation hypothesis''; and (2) we prove that distillation can be much cheaper than learning from scratch, and make progress on characterizing its complexity.

Via

Rimon Melamed, Lucas H. McCabe, Tanay Wakhare, Yejin Kim, H. Howie Huang, Enric Boix-Adsera

Carefully-designed prompts are key to inducing desired behavior in Large Language Models (LLMs). As a result, great effort has been dedicated to engineering prompts that guide LLMs toward particular behaviors. In this work, we propose an automatic prompt optimization framework, PROPANE, which aims to find a prompt that induces semantically similar outputs to a fixed set of examples without user intervention. We further demonstrate that PROPANE can be used to (a) improve existing prompts, and (b) discover semantically obfuscated prompts that transfer between models.

Via

Enric Boix-Adsera, Omid Saremi, Emmanuel Abbe, Samy Bengio, Etai Littwin, Joshua Susskind

We investigate the capabilities of transformer large language models (LLMs) on relational reasoning tasks involving abstract symbols. Such tasks have long been studied in the neuroscience literature as fundamental building blocks for more complex abilities in programming, mathematics, and verbal reasoning. For (i) regression tasks, we prove that transformers generalize when trained, but require astonishingly large quantities of training data. For (ii) next-token-prediction tasks with symbolic labels, we show an "inverse scaling law": transformers fail to generalize as their embedding dimension increases. For both settings (i) and (ii), we propose subtle transformer modifications which can reduce the amount of data needed by adding two trainable parameters per head.

Via

Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, Joshua Susskind

We identify incremental learning dynamics in transformers, where the difference between trained and initial weights progressively increases in rank. We rigorously prove this occurs under the simplifying assumptions of diagonal weight matrices and small initialization. Our experiments support the theory and also show that phenomenon can occur in practice without the simplifying assumptions.

Via

Enric Boix-Adsera, Etai Littwin

We study when the neural tangent kernel (NTK) approximation is valid for training a model with the square loss. In the lazy training setting of Chizat et al. 2019, we show that rescaling the model by a factor of $\alpha = O(T)$ suffices for the NTK approximation to be valid until training time $T$. Our bound is tight and improves on the previous bound of Chizat et al. 2019, which required a larger rescaling factor of $\alpha = O(T^2)$.

Via

Emmanuel Abbe, Enric Boix-Adsera, Theodor Misiakiewicz

We investigate the time complexity of SGD learning on fully-connected neural networks with isotropic data. We put forward a complexity measure -- the leap -- which measures how "hierarchical" target functions are. For $d$-dimensional uniform Boolean or isotropic Gaussian data, our main conjecture states that the time complexity to learn a function $f$ with low-dimensional support is $\tilde\Theta (d^{\max(\mathrm{Leap}(f),2)})$. We prove a version of this conjecture for a class of functions on Gaussian isotropic data and 2-layer neural networks, under additional technical assumptions on how SGD is run. We show that the training sequentially learns the function support with a saddle-to-saddle dynamic. Our result departs from [Abbe et al. 2022] by going beyond leap 1 (merged-staircase functions), and by going beyond the mean-field and gradient flow approximations that prohibit the full complexity control obtained here. Finally, we note that this gives an SGD complexity for the full training trajectory that matches that of Correlational Statistical Query (CSQ) lower-bounds.

Via

Enric Boix-Adsera, Hannah Lawrence, George Stepaniants, Philippe Rigollet

Comparing the representations learned by different neural networks has recently emerged as a key tool to understand various architectures and ultimately optimize them. In this work, we introduce GULP, a family of distance measures between representations that is explicitly motivated by downstream predictive tasks. By construction, GULP provides uniform control over the difference in prediction performance between two representations, with respect to regularized linear prediction tasks. Moreover, it satisfies several desirable structural properties, such as the triangle inequality and invariance under orthogonal transformations, and thus lends itself to data embedding and visualization. We extensively evaluate GULP relative to other methods, and demonstrate that it correctly differentiates between architecture families, converges over the course of training, and captures generalization performance on downstream linear tasks.

Via

Emmanuel Abbe, Enric Boix-Adsera

We prove computational limitations for learning with neural networks trained by noisy gradient descent (GD). Our result applies whenever GD training is equivariant (true for many standard architectures), and quantifies the alignment needed between architectures and data in order for GD to learn. As applications, (i) we characterize the functions that fully-connected networks can weak-learn on the binary hypercube and unit sphere, demonstrating that depth-2 is as powerful as any other depth for this task; (ii) we extend the merged-staircase necessity result for learning with latent low-dimensional structure [ABM22] to beyond the mean-field regime. Our techniques extend to stochastic gradient descent (SGD), for which we show nontrivial hardness results for learning with fully-connected networks, based on cryptographic assumptions.

Via

Emmanuel Abbe, Enric Boix-Adsera, Theodor Misiakiewicz

It is currently known how to characterize functions that neural networks can learn with SGD for two extremal parameterizations: neural networks in the linear regime, and neural networks with no structural constraints. However, for the main parametrization of interest (non-linear but regular networks) no tight characterization has yet been achieved, despite significant developments. We take a step in this direction by considering depth-2 neural networks trained by SGD in the mean-field regime. We consider functions on binary inputs that depend on a latent low-dimensional subspace (i.e., small number of coordinates). This regime is of interest since it is poorly understood how neural networks routinely tackle high-dimensional datasets and adapt to latent low-dimensional structure without suffering from the curse of dimensionality. Accordingly, we study SGD-learnability with $O(d)$ sample complexity in a large ambient dimension $d$. Our main results characterize a hierarchical property, the "merged-staircase property", that is both necessary and nearly sufficient for learning in this setting. We further show that non-linear training is necessary: for this class of functions, linear methods on any feature map (e.g., the NTK) are not capable of learning efficiently. The key tools are a new "dimension-free" dynamics approximation result that applies to functions defined on a latent space of low-dimension, a proof of global convergence based on polynomial identity testing, and an improvement of lower bounds against linear methods for non-almost orthogonal functions.

Via

Emmanuel Abbe, Enric Boix-Adsera, Matthew Brennan, Guy Bresler, Dheeraj Nagaraj

This paper identifies a structural property of data distributions that enables deep neural networks to learn hierarchically. We define the "staircase" property for functions over the Boolean hypercube, which posits that high-order Fourier coefficients are reachable from lower-order Fourier coefficients along increasing chains. We prove that functions satisfying this property can be learned in polynomial time using layerwise stochastic coordinate descent on regular neural networks -- a class of network architectures and initializations that have homogeneity properties. Our analysis shows that for such staircase functions and neural networks, the gradient-based algorithm learns high-level features by greedily combining lower-level features along the depth of the network. We further back our theoretical results with experiments showing that staircase functions are also learnable by more standard ResNet architectures with stochastic gradient descent. Both the theoretical and experimental results support the fact that staircase properties have a role to play in understanding the capabilities of gradient-based learning on regular networks, in contrast to general polynomial-size networks that can emulate any SQ or PAC algorithms as recently shown.

Via