Abstract:We consider the symmetric binary perceptron model, a simple model of neural networks that has gathered significant attention in the statistical physics, information theory and probability theory communities, with recent connections made to the performance of learning algorithms in Baldassi et al. '15. We establish that the partition function of this model, normalized by its expected value, converges to a lognormal distribution. As a consequence, this allows us to establish several conjectures for this model: (i) it proves the contiguity conjecture of Aubin et al. '19 between the planted and unplanted models in the satisfiable regime; (ii) it establishes the sharp threshold conjecture; (iii) it proves the frozen 1-RSB conjecture in the symmetric case, conjectured first by Krauth-M\'ezard '89 in the asymmetric case. In a recent concurrent work of Perkins-Xu [PX21], the last two conjectures were also established by proving that the partition function concentrates on an exponential scale. This left open the contiguity conjecture and the lognormal limit characterization, which are established here. In particular, our proof technique relies on a dense counter-part of the small graph conditioning method, which was developed for sparse models in the celebrated work of Robinson and Wormald.
Abstract:A well-known result across information theory, machine learning, and statistical physics shows that the maximum entropy distribution under a mean constraint has an exponential form called the Gibbs-Boltzmann distribution. This is used for instance in density estimation or to achieve excess risk bounds derived from single-scale entropy regularizers (Xu-Raginsky '17). This paper investigates a generalization of these results to a multiscale setting. We present different ways of generalizing the maximum entropy result by incorporating the notion of scale. For different entropies and arbitrary scale transformations, it is shown that the distribution maximizing a multiscale entropy is characterized by a procedure which has an analogy to the renormalization group procedure in statistical physics. For the case of decimation transformation, it is further shown that this distribution is Gaussian whenever the optimal single-scale distribution is Gaussian. This is then applied to neural networks, and it is shown that in a teacher-student scenario, the multiscale Gibbs posterior can achieve a smaller excess risk than the single-scale Gibbs posterior.
Abstract:Principal Component Analysis (PCA) is a powerful tool in statistics and machine learning. While existing study of PCA focuses on the recovery of principal components and their associated eigenvalues, there are few precise characterizations of individual principal component scores that yield low-dimensional embedding of samples. That hinders the analysis of various spectral methods. In this paper, we first develop an $\ell_p$ perturbation theory for a hollowed version of PCA in Hilbert spaces which provably improves upon the vanilla PCA in the presence of heteroscedastic noises. Through a novel $\ell_p$ analysis of eigenvectors, we investigate entrywise behaviors of principal component score vectors and show that they can be approximated by linear functionals of the Gram matrix in $\ell_p$ norm, which includes $\ell_2$ and $\ell_\infty$ as special examples. For sub-Gaussian mixture models, the choice of $p$ giving optimal bounds depends on the signal-to-noise ratio, which further yields optimality guarantees for spectral clustering. For contextual community detection, the $\ell_p$ theory leads to a simple spectral algorithm that achieves the information threshold for exact recovery. These also provide optimal recovery results for Gaussian mixture and stochastic block models as special cases.
Abstract:The problem of learning graphons has attracted considerable attention across several scientific communities, with significant progress over the recent years in sparser regimes. Yet, the current techniques still require diverging degrees in order to succeed with efficient algorithms in the challenging cases where the local structure of the graph is homogeneous. This paper provides an efficient algorithm to learn graphons in the constant expected degree regime. The algorithm is shown to succeed in estimating the rank-$k$ projection of a graphon in the $L_2$ metric if the top $k$ eigenvalues of the graphon satisfy a generalized Kesten-Stigum condition.
Abstract:The goal of this paper is to characterize function distributions that deep learning can or cannot learn in poly-time. A universality result is proved for SGD-based deep learning and a non-universality result is proved for GD-based deep learning; this also gives a separation between SGD-based deep learning and statistical query algorithms: (1) {\it Deep learning with SGD is efficiently universal.} Any function distribution that can be learned from samples in poly-time can also be learned by a poly-size neural net trained with SGD on a poly-time initialization with poly-steps, poly-rate and possibly poly-noise. Therefore deep learning provides a universal learning paradigm: it was known that the approximation and estimation errors could be controlled with poly-size neural nets, using ERM that is NP-hard; this new result shows that the optimization error can also be controlled with SGD in poly-time. The picture changes for GD with large enough batches: (2) {\it Result (1) does not hold for GD:} Neural nets of poly-size trained with GD (full gradients or large enough batches) on any initialization with poly-steps, poly-range and at least poly-noise cannot learn any function distribution that has super-polynomial {\it cross-predictability,} where the cross-predictability gives a measure of ``average'' function correlation -- relations and distinctions to the statistical dimension are discussed. In particular, GD with these constraints can learn efficiently monomials of degree $k$ if and only if $k$ is constant. Thus (1) and (2) point to an interesting contrast: SGD is universal even with some poly-noise while full GD or SQ algorithms are not (e.g., parities).
Abstract:We derive generalization and excess risk bounds for neural nets using a family of complexity measures based on a multilevel relative entropy. The bounds are obtained by introducing the notion of generated hierarchical coverings of neural nets and by using the technique of chaining mutual information introduced in Asadi et al. NeurIPS'18. The resulting bounds are algorithm-dependent and exploit the multilevel structure of neural nets. This, in turn, leads to an empirical risk minimization problem with a multilevel entropic regularization. The minimization problem is resolved by introducing a multi-scale generalization of the celebrated Gibbs posterior distribution, proving that the derived distribution achieves the unique minimum. This leads to a new training procedure for neural nets with performance guarantees, which exploits the chain rule of relative entropy rather than the chain rule of derivatives (as in backpropagation). To obtain an efficient implementation of the latter, we further develop a multilevel Metropolis algorithm simulating the multi-scale Gibbs distribution, with an experiment for a two-layer neural net on the MNIST data set.
Abstract:As the success of deep learning reaches more grounds, one would like to also envision the potential limits of deep learning. This paper gives a first set of results proving that deep learning algorithms fail at learning certain efficiently learnable functions. Parity functions form the running example of our results and the paper puts forward a notion of low cross-predictability that defines a more general class of functions for which such failures tend to generalize (with examples in community detection and arithmetic learning). Recall that it is known that the class of neural networks (NNs) with polynomial network size can express any function that can be implemented in polynomial time, and that their sample complexity scales polynomially with the network size. The challenge is with the optimization error (the ERM is NP-hard), and the success behind deep learning is to train deep NNs with descent algorithms. The failures shown in this paper apply to training poly-size NNs on function distributions of low cross-predictability with a descent algorithm that is either run with limited memory per sample or that is initialized and run with enough randomness (exponentially small for GD). We further claim that such types of constraints are necessary to obtain failures, in that exact SGD with careful non-random initialization can learn parities. The cross-predictability notion has some similarity with the statistical dimension used in statistical query (SQ) algorithms, however the two definitions are different for reasons explained in the paper. The proof techniques are based on exhibiting algorithmic constraints that imply a statistical indistinguishability between the algorithm's output on the test model v.s.\ a null model, using information measures to bound the total variation distance.
Abstract:Bounding the generalization error of learning algorithms has a long history, that yet falls short in explaining various generalization successes including those of deep learning. Two important difficulties are (i) exploiting the dependencies between the hypotheses, (ii) exploiting the dependence between the algorithm's input and output. Progress on the first point was made with the chaining method, originating from the work of Kolmogorov and used in the VC-dimension bound. More recently, progress on the second point was made with the mutual information method by Russo and Zou '15. Yet, these two methods are currently disjoint. In this paper, we introduce a technique to combine chaining and mutual information methods, to obtain a generalization bound that is both algorithm-dependent and that exploits the dependencies between the hypotheses. We provide an example in which our bound significantly outperforms both the chaining and the mutual information bounds. As a corollary, we tighten Dudley inequality under the knowledge that a learning algorithm chooses its output from a small subset of hypotheses with high probability; an assumption motivated by the performance of SGD discussed in Zhang et al. '17.
Abstract:This paper develops coding techniques to reduce the running time of distributed learning tasks. It characterizes the fundamental tradeoff to compute gradients (and more generally vector summations) in terms of three parameters: computation load, straggler tolerance and communication cost. It further gives an explicit coding scheme that achieves the optimal tradeoff based on recursive polynomial constructions, coding both across data subsets and vector components. As a result, the proposed scheme allows to minimize the running time for gradient computations. Implementations are made on Amazon EC2 clusters using Python with mpi4py package. Results show that the proposed scheme maintains the same generalization error while reducing the running time by $32\%$ compared to uncoded schemes and $23\%$ compared to prior coded schemes focusing only on stragglers (Tandon et al., ICML 2017).
Abstract:This paper develops upper and lower bounds on the influence measure in a network, more precisely, the expected number of nodes that a seed set can influence in the independent cascade model. In particular, our bounds exploit nonbacktracking walks, Fortuin-Kasteleyn-Ginibre (FKG) type inequalities, and are computed by message passing implementation. Nonbacktracking walks have recently allowed for headways in community detection, and this paper shows that their use can also impact the influence computation. Further, we provide a knob to control the trade-off between the efficiency and the accuracy of the bounds. Finally, the tightness of the bounds is illustrated with simulations on various network models.