Alert button
Picture for Eduardo Gutierrez

Eduardo Gutierrez

Alert button

Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems

Jun 30, 2023
Cagri Kilic, Eduardo Gutierrez, Jason N. Gross

Figure 1 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Figure 2 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Figure 3 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems
Figure 4 for Evaluation of the Benefits of Zero Velocity Update in Decentralized EKF-Based Cooperative Localization Algorithms for GNSS-Denied Multi-Robot Systems

This paper proposes the cooperative use of zero velocity update (ZU) in a decentralized extended Kalman filter (DEKF) based localization algorithm for multi-robot systems. The filter utilizes inertial measurement unit (IMU), ultra-wideband (UWB), and odometry velocity measurements to improve the localization performance of the system in the presence of a GNSS-denied environment. The contribution of this work is to evaluate the benefits of using ZU in a DEKF-based localization algorithm. The algorithm is tested with real hardware in a video motion capture facility and a Robot Operating System (ROS) based simulation environment for unmanned ground vehicles (UGV). Both simulation and real-world experiments are performed to show the effectiveness of using ZU in one robot to reinstate the localization of other robots in a multi-robot system. Experimental results from GNSS-denied simulation and real-world environments show that using ZU with simple heuristics in the DEKF significantly improves the 3D localization accuracy.

* 18 pages, preprint version, the manuscript is accepted for publication in NAVIGATION, the Journal of the Institute of Navigation. Submitted:10-11-2022, Revised: 21-04-2023, Accepted:23-06-2023 
Viaarxiv icon

ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots

Dec 14, 2021
Cagri Kilic, Shounak Das, Eduardo Gutierrez, Ryan Watson, Jason Gross

Figure 1 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Figure 2 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Figure 3 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots
Figure 4 for ZUPT Aided GNSS Factor Graph with Inertial Navigation Integration for Wheeled Robots

In this work, we demonstrate the importance of zero velocity information for global navigation satellite system (GNSS) based navigation. The effectiveness of using the zero velocity information with zero velocity update (ZUPT) for inertial navigation applications have been shown in the literature. Here we leverage this information and add it as a position constraint in a GNSS factor graph. We also compare its performance to a GNSS/inertial navigation system (INS) coupled factor graph. We tested our ZUPT aided factor graph method on three datasets and compared it with the GNSS-only factor graph.

* 9 pages, 8 figures, Preprint Version. Published in ION GNSS+ 2021 
Viaarxiv icon