Abstract:In ordinal classification, misclassifying neighboring ranks is common, yet the consequences of these errors are not the same. For example, misclassifying benign tumor categories is less consequential, compared to an error at the pre-cancerous to cancerous threshold, which could profoundly influence treatment choices. Despite this, existing ordinal classification methods do not account for the varying importance of these margins, treating all neighboring classes as equally significant. To address this limitation, we propose CLOC, a new margin-based contrastive learning method for ordinal classification that learns an ordered representation based on the optimization of multiple margins with a novel multi-margin n-pair loss (MMNP). CLOC enables flexible decision boundaries across key adjacent categories, facilitating smooth transitions between classes and reducing the risk of overfitting to biases present in the training data. We provide empirical discussion regarding the properties of MMNP and show experimental results on five real-world image datasets (Adience, Historical Colour Image Dating, Knee Osteoarthritis, Indian Diabetic Retinopathy Image, and Breast Carcinoma Subtyping) and one synthetic dataset simulating clinical decision bias. Our results demonstrate that CLOC outperforms existing ordinal classification methods and show the interpretability and controllability of CLOC in learning meaningful, ordered representations that align with clinical and practical needs.
Abstract:The utilization of Transformer-based models prospers the growth of multi-document summarization (MDS). Given the huge impact and widespread adoption of Transformer-based models in various natural language processing tasks, investigating their performance and behaviors in the context of MDS becomes crucial for advancing the field and enhancing the quality of summary. To thoroughly examine the behaviours of Transformer-based MDS models, this paper presents five empirical studies on (1) measuring the impact of document boundary separators quantitatively; (2) exploring the effectiveness of different mainstream Transformer structures; (3) examining the sensitivity of the encoder and decoder; (4) discussing different training strategies; and (5) discovering the repetition in a summary generation. The experimental results on prevalent MDS datasets and eleven evaluation metrics show the influence of document boundary separators, the granularity of different level features and different model training strategies. The results also reveal that the decoder exhibits greater sensitivity to noises compared to the encoder. This underscores the important role played by the decoder, suggesting a potential direction for future research in MDS. Furthermore, the experimental results indicate that the repetition problem in the generated summaries has correlations with the high uncertainty scores.
Abstract:Vision-and-Language Navigation (VLN) task aims to enable AI agents to accurately understand and follow natural language instructions to navigate through real-world environments, ultimately reaching specific target locations. We recognise a promising opportunity to extend VLN to a comparable navigation task that holds substantial significance in our daily lives, albeit within the virtual realm: navigating websites on the Internet. This paper proposes a new task named Vision-and-Language Navigation on Websites (WebVLN), where we use question-based instructions to train an agent, emulating how users naturally browse websites. Unlike the existing VLN task that only pays attention to vision and instruction (language), the WebVLN agent further considers underlying web-specific content like HTML, which could not be seen on the rendered web pages yet contains rich visual and textual information. Toward this goal, we contribute a dataset, WebVLN-v1, and introduce a novel approach called Website-aware VLN Network (WebVLN-Net), which is built upon the foundation of state-of-the-art VLN techniques. Experimental results show that WebVLN-Net outperforms current VLN and web-related navigation methods. We believe that the introduction of the new WebVLN task and its dataset will establish a new dimension within the VLN domain and contribute to the broader vision-and-language research community. The code is available at: https://github.com/WebVLN/WebVLN.