Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Universal characteristics of deep neural network loss surfaces from random matrix theory


May 17, 2022
Nicholas P Baskerville, Jonathan P Keating, Francesco Mezzadri, Joseph Najnudel, Diego Granziol

Add code

* 42 pages 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Applicability of Random Matrix Theory in Deep Learning


Feb 12, 2021
Nicholas P Baskerville, Diego Granziol, Jonathan P Keating

Add code

* 12 pages, 8 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Explaining the Adaptive Generalisation Gap


Nov 15, 2020
Diego Granziol, Samuel Albanie, Xingchen Wan, Stephen Roberts

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Curvature is Key: Sub-Sampled Loss Surfaces and the Implications for Large Batch Training


Jun 16, 2020
Diego Granziol

Add code

* 16 pages, 13 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Flatness is a False Friend


Jun 16, 2020
Diego Granziol

Add code

* 9 pages, 10 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Beyond Random Matrix Theory for Deep Networks


Jun 13, 2020
Diego Granziol

Add code

* 8 pages 5 Figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Iterate Averaging Helps: An Alternative Perspective in Deep Learning


Mar 02, 2020
Diego Granziol, Xingchen Wan, Stephen Roberts

Add code

* 9 pages, 8 figures, 21 pages including references and appendix 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MLRG Deep Curvature


Dec 20, 2019
Diego Granziol, Xingchen Wan, Timur Garipov, Dmitry Vetrov, Stephen Roberts

Add code

* 11 pages, 11 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Maximum Entropy approach to Massive Graph Spectra


Dec 19, 2019
Diego Granziol, Robin Ru, Stefan Zohren, Xiaowen Dong, Michael Osborne, Stephen Roberts

Add code

* 12 pages. 9 Figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning


Jun 03, 2019
Diego Granziol, Binxin Ru, Stefan Zohren, Xiaowen Doing, Michael Osborne, Stephen Roberts

Add code

* MEMe: An Accurate Maximum Entropy Method for Efficient Approximations in Large-Scale Machine Learning. Entropy, 21(6), 551 (2019) 
* 18 pages, 3 figures, Published at Entropy 2019: Special Issue Entropy Based Inference and Optimization in Machine Learning 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>