Abstract:Pretraining massively multilingual Large Language Models (LLMs) for many languages at once is challenging due to limited model capacity, scarce high-quality data, and compute constraints. Moreover, the lack of language coverage of the tokenizer makes it harder to address the gap for new languages purely at the post-training stage. In this work, we study what relatively cheap interventions early on in training improve "language plasticity", or adaptation capabilities of the model post-training to new languages. We focus on tokenizer design and propose using a universal tokenizer that is trained for more languages than the primary pretraining languages to enable efficient adaptation in expanding language coverage after pretraining. Our systematic experiments across diverse groups of languages and different training strategies show that a universal tokenizer enables significantly higher language adaptation, with up to 20.2% increase in win rates compared to tokenizers specific to pretraining languages. Furthermore, a universal tokenizer also leads to better plasticity towards languages that are completely unseen in the tokenizer and pretraining, by up to 5% win rate gain. We achieve this adaptation to an expanded set of languages with minimal compromise in performance on the majority of languages included in pretraining.
Abstract:Yor\`ub\'a an African language with roughly 47 million speakers encompasses a continuum with several dialects. Recent efforts to develop NLP technologies for African languages have focused on their standard dialects, resulting in disparities for dialects and varieties for which there are little to no resources or tools. We take steps towards bridging this gap by introducing a new high-quality parallel text and speech corpus YOR\`ULECT across three domains and four regional Yor\`ub\'a dialects. To develop this corpus, we engaged native speakers, travelling to communities where these dialects are spoken, to collect text and speech data. Using our newly created corpus, we conducted extensive experiments on (text) machine translation, automatic speech recognition, and speech-to-text translation. Our results reveal substantial performance disparities between standard Yor\`ub\'a and the other dialects across all tasks. However, we also show that with dialect-adaptive finetuning, we are able to narrow this gap. We believe our dataset and experimental analysis will contribute greatly to developing NLP tools for Yor\`ub\'a and its dialects, and potentially for other African languages, by improving our understanding of existing challenges and offering a high-quality dataset for further development. We release YOR\`ULECT dataset and models publicly under an open license.