Abstract:Puck detection in ice hockey broadcast videos poses significant challenges due to the puck's small size, frequent occlusions, motion blur, broadcast artifacts, and scale inconsistencies due to varying camera zoom and broadcast camera viewpoints. Prior works focus on appearance-based or motion-based cues of the puck without explicitly modelling the cues derived from player behaviour. Players consistently turn their bodies and direct their gaze toward the puck. Motivated by this strong contextual cue, we propose Puck Localization Using Contextual Cues (PLUCC), a novel approach for scale-aware and context-driven single-frame puck detections. PLUCC consists of three components: (a) a contextual encoder, which utilizes player orientations and positioning as helpful priors; (b) a feature pyramid encoder, which extracts multiscale features from the dual encoders; and (c) a gating decoder that combines latent features with a channel gating mechanism. For evaluation, in addition to standard average precision, we propose Rink Space Localization Error (RSLE), a scale-invariant homography-based metric for removing perspective bias from rink space evaluation. The experimental results of PLUCC on the PuckDataset dataset demonstrated state-of-the-art detection performance, surpassing previous baseline methods by an average precision improvement of 12.2% and RSLE average precision of 25%. Our research demonstrates the critical role of contextual understanding in improving puck detection performance, with broad implications for automated sports analysis.
Abstract:In the field of computer vision-driven ice hockey analytics, one of the most challenging and least studied tasks is goalie pose estimation. Unlike general human pose estimation, goalie pose estimation is much more complex as it involves not only the detection of keypoints corresponding to the joints of the goalie concealed under thick padding and mask, but also a large number of non-human keypoints corresponding to the large leg pads and gloves worn, the stick, as well as the hockey net. To tackle this challenge, we introduce GoalieNet, a multi-stage deep neural network for jointly estimating the pose of the goalie, their equipment, and the net. Experimental results using NHL benchmark data demonstrate that the proposed GoalieNet can achieve an average of 84\% accuracy across all keypoints, where 22 out of 29 keypoints are detected with more than 80\% accuracy. This indicates that such a joint pose estimation approach can be a promising research direction.
Abstract:Recognizing actions in ice hockey using computer vision poses challenges due to bulky equipment and inadequate image quality. A novel two-stream framework has been designed to improve action recognition accuracy for hockey using three main components. First, pose is estimated via the Part Affinity Fields model to extract meaningful cues from the player. Second, optical flow (using LiteFlowNet) is used to extract temporal features. Third, pose and optical flow streams are fused and passed to fully-connected layers to estimate the hockey player's action. A novel publicly available dataset named HARPET (Hockey Action Recognition Pose Estimation, Temporal) was created, composed of sequences of annotated actions and pose of hockey players including their hockey sticks as an extension of human body pose. Three contributions are recognized. (1) The novel two-stream architecture achieves 85% action recognition accuracy, with the inclusion of optical flows increasing accuracy by about 10%. (2) The unique localization of hand-held objects (e.g., hockey sticks) as part of pose increases accuracy by about 13%. (3) For pose estimation, a bigger and more general dataset, MSCOCO, is successfully used for transfer learning to a smaller and more specific dataset, HARPET, achieving a PCKh of 87%.