Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

GraphLab: A New Framework For Parallel Machine Learning


Aug 09, 2014
Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E. Guestrin, Joseph Hellerstein

* Appears in Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence (UAI2010) 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Distributed GraphLab: A Framework for Machine Learning in the Cloud


Apr 26, 2012
Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, Joseph M. Hellerstein

* Proceedings of the VLDB Endowment (PVLDB), Vol. 5, No. 8, pp. 716-727 (2012) 
* VLDB2012 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Efficient Multicore Collaborative Filtering


Aug 17, 2011
Yao Wu, Qiang Yan, Danny Bickson, Yucheng Low, Qing Yang

* In ACM KDD CUP Workshop 2011 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

GraphLab: A Distributed Framework for Machine Learning in the Cloud


Jul 05, 2011
Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin

* CMU Tech Report, GraphLab project webpage: http://graphlab.org 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Kernel Belief Propagation


May 27, 2011
Le Song, Arthur Gretton, Danny Bickson, Yucheng Low, Carlos Guestrin

* In the Fourteenth International Conference on Artificial Intelligence and Statistics April 11-13, 2011 Ft. Lauderdale, FL, USA 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Parallel Coordinate Descent for L1-Regularized Loss Minimization


May 26, 2011
Joseph K. Bradley, Aapo Kyrola, Danny Bickson, Carlos Guestrin

* In the 28th International Conference on Machine Learning, July 2011, Washington, USA 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Inference with Multivariate Heavy-Tails in Linear Models


Mar 21, 2011
Danny Bickson, Carlos Guestrin

* In Neural Information Processing System (NIPS) 2010, Dec. 2010, Vancouver, Canada 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

GraphLab: A New Framework for Parallel Machine Learning


Jun 25, 2010
Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, Joseph M. Hellerstein

* The 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010), Catalina Island, California, July 8-11, 2010 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Fixing Convergence of Gaussian Belief Propagation


Jul 04, 2009
Jason K. Johnson, Danny Bickson, Danny Dolev

* In the IEEE International Symposium on Information Theory (ISIT) 2009, Seoul, South Korea, July 2009 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

A Gaussian Belief Propagation Solver for Large Scale Support Vector Machines


Oct 09, 2008
Danny Bickson, Elad Yom-Tov, Danny Dolev

* The 5th European Complex Systems Conference (ECCS 2008), Jerusalem, Sept. 2008 
* 12 pages, 1 figure, appeared in the 5th European Complex Systems Conference, Jerusalem, Sept. 2008 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email