Abstract:Temporal action segmentation (TAS) has long been a key area of research in both robotics and computer vision. In robotics, algorithms have primarily focused on leveraging proprioceptive information to determine skill boundaries, with recent approaches in surgical robotics incorporating vision. In contrast, computer vision typically relies on exteroceptive sensors, such as cameras. Existing multimodal TAS models in robotics integrate feature fusion within the model, making it difficult to reuse learned features across different models. Meanwhile, pretrained vision-only feature extractors commonly used in computer vision struggle in scenarios with limited object visibility. In this work, we address these challenges by proposing M2R2, a multimodal feature extractor tailored for TAS, which combines information from both proprioceptive and exteroceptive sensors. We introduce a novel pretraining strategy that enables the reuse of learned features across multiple TAS models. Our method achieves state-of-the-art performance on the REASSEMBLE dataset, a challenging multimodal robotic assembly dataset, outperforming existing robotic action segmentation models by 46.6%. Additionally, we conduct an extensive ablation study to evaluate the contribution of different modalities in robotic TAS tasks.
Abstract:Robotic manipulation remains a core challenge in robotics, particularly for contact-rich tasks such as industrial assembly and disassembly. Existing datasets have significantly advanced learning in manipulation but are primarily focused on simpler tasks like object rearrangement, falling short of capturing the complexity and physical dynamics involved in assembly and disassembly. To bridge this gap, we present REASSEMBLE (Robotic assEmbly disASSEMBLy datasEt), a new dataset designed specifically for contact-rich manipulation tasks. Built around the NIST Assembly Task Board 1 benchmark, REASSEMBLE includes four actions (pick, insert, remove, and place) involving 17 objects. The dataset contains 4,551 demonstrations, of which 4,035 were successful, spanning a total of 781 minutes. Our dataset features multi-modal sensor data including event cameras, force-torque sensors, microphones, and multi-view RGB cameras. This diverse dataset supports research in areas such as learning contact-rich manipulation, task condition identification, action segmentation, and more. We believe REASSEMBLE will be a valuable resource for advancing robotic manipulation in complex, real-world scenarios. The dataset is publicly available on our project website: https://dsliwowski1.github.io/REASSEMBLE_page.
Abstract:The introduction of robots into everyday scenarios necessitates algorithms capable of monitoring the execution of tasks. In this paper, we propose ConditionNET, an approach for learning the preconditions and effects of actions in a fully data-driven manner. We develop an efficient vision-language model and introduce additional optimization objectives during training to optimize for consistent feature representations. ConditionNET explicitly models the dependencies between actions, preconditions, and effects, leading to improved performance. We evaluate our model on two robotic datasets, one of which we collected for this paper, containing 406 successful and 138 failed teleoperated demonstrations of a Franka Emika Panda robot performing tasks like pouring and cleaning the counter. We show in our experiments that ConditionNET outperforms all baselines on both anomaly detection and phase prediction tasks. Furthermore, we implement an action monitoring system on a real robot to demonstrate the practical applicability of the learned preconditions and effects. Our results highlight the potential of ConditionNET for enhancing the reliability and adaptability of robots in real-world environments. The data is available on the project website: https://dsliwowski1.github.io/ConditionNET_page.
Abstract:Robots are becoming increasingly integrated into our lives, assisting us in various tasks. To ensure effective collaboration between humans and robots, it is essential that they understand our intentions and anticipate our actions. In this paper, we propose a Human-Object Interaction (HOI) anticipation framework for collaborative robots. We propose an efficient and robust transformer-based model to detect and anticipate HOIs from videos. This enhanced anticipation empowers robots to proactively assist humans, resulting in more efficient and intuitive collaborations. Our model outperforms state-of-the-art results in HOI detection and anticipation in VidHOI dataset with an increase of 1.76% and 1.04% in mAP respectively while being 15.4 times faster. We showcase the effectiveness of our approach through experimental results in a real robot, demonstrating that the robot's ability to anticipate HOIs is key for better Human-Robot Interaction. More information can be found on our project webpage: https://evm7.github.io/HOI4ABOT_page/