Abstract:Structural High Entropy Alloys (HEAs) are crucial in advancing technology across various sectors, including aerospace, automotive, and defense industries. However, the scarcity of integrated chemistry, process, structure, and property data presents significant challenges for predictive property modeling. Given the vast design space of these alloys, uncovering the underlying patterns is essential yet difficult, requiring advanced methods capable of learning from limited and heterogeneous datasets. This work presents several sensitivity analyses, highlighting key elemental contributions to mechanical behavior, including insights into the compositional factors associated with brittle and fractured responses observed during nanoindentation testing in the BIRDSHOT center NiCoFeCrVMnCuAl system dataset. Several encoder decoder based chemistry property models, carefully tuned through Bayesian multi objective hyperparameter optimization, are evaluated for mapping alloy composition to six mechanical properties. The models achieve competitive or superior performance to conventional regressors across all properties, particularly for yield strength and the UTS/YS ratio, demonstrating their effectiveness in capturing complex composition property relationships.
Abstract:We investigate methods of microstructure representation for the purpose of predicting processing condition from microstructure image data. A binary alloy (uranium-molybdenum) that is currently under development as a nuclear fuel was studied for the purpose of developing an improved machine learning approach to image recognition, characterization, and building predictive capabilities linking microstructure to processing conditions. Here, we test different microstructure representations and evaluate model performance based on the F1 score. A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material processing conditions. We find that our newly developed microstructure representation describes image data well, and the traditional approach of utilizing area fractions of different phases is insufficient for distinguishing between multiple classes using a relatively small, imbalanced original data set of 272 images. To explore the applicability of generative methods for supplementing such limited data sets, generative adversarial networks were trained to generate artificial microstructure images. Two different generative networks were trained and tested to assess performance. Challenges and best practices associated with applying machine learning to limited microstructure image data sets is also discussed. Our work has implications for quantitative microstructure analysis, and development of microstructure-processing relationships in limited data sets typical of metallurgical process design studies.
Abstract:Micrograph quantification is an essential component of several materials science studies. Machine learning methods, in particular convolutional neural networks, have previously demonstrated performance in image recognition tasks across several disciplines (e.g. materials science, medical imaging, facial recognition). Here, we apply these well-established methods to develop an approach to microstructure quantification for kinetic modeling of a discontinuous precipitation reaction in a case study on the uranium-molybdenum system. Prediction of material processing history based on image data (classification), calculation of area fraction of phases present in the micrographs (segmentation), and kinetic modeling from segmentation results were performed. Results indicate that convolutional neural networks represent microstructure image data well, and segmentation using the k-means clustering algorithm yields results that agree well with manually annotated images. Classification accuracies of original and segmented images are both 94\% for a 5-class classification problem. Kinetic modeling results agree well with previously reported data using manual thresholding. The image quantification and kinetic modeling approach developed and presented here aims to reduce researcher bias introduced into the characterization process, and allows for leveraging information in limited image data sets.