Abstract:Generally, privacy-enhancing face recognition systems are designed to offer permanent protection of face embeddings. Recently, so-called soft-biometric privacy-enhancement approaches have been introduced with the aim of canceling soft-biometric attributes. These methods limit the amount of soft-biometric information (gender or skin-colour) that can be inferred from face embeddings. Previous work has underlined the need for research into rigorous evaluations and standardised evaluation protocols when assessing privacy protection capabilities. Motivated by this fact, this paper explores to what extent the non-invertibility requirement can be met by methods that claim to provide soft-biometric privacy protection. Additionally, a detailed vulnerability assessment of state-of-the-art face embedding extractors is analysed in terms of the transformation complexity used for privacy protection. In this context, a well-known state-of-the-art face image reconstruction approach has been evaluated on protected face embeddings to break soft biometric privacy protection. Experimental results show that biometric privacy-enhanced face embeddings can be reconstructed with an accuracy of up to approximately 98%, depending on the complexity of the protection algorithm.
Abstract:The development of large-scale identification systems that ensure the privacy protection of enrolled subjects represents a major challenge. Biometric deployments that provide interoperability and usability by including efficient multi-biometric solutions are a recent requirement. In the context of privacy protection, several template protection schemes have been proposed in the past. However, these schemes seem inadequate for indexing (workload reduction) in biometric identification systems. More specifically, they have been used in identification systems that perform exhaustive searches, leading to a degradation of computational efficiency. To overcome these limitations, we propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates and is agnostic with respect to biometric characteristics and biometric template protection schemes. To this end, a multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics. Experimental results reported on publicly available databases using state-of-the-art Deep Neural Network (DNN)-based embedding extractors show that the protected multi-biometric identification system can reduce the computational workload to approximately 57\% (indexing up to three types of biometric characteristics) and 53% (indexing up to two types of biometric characteristics), while simultaneously improving the biometric performance of the baseline biometric system at the high-security thresholds. The source code of the proposed multi-biometric indexing approach together with the composed multi-biometric dataset, will be made available to the research community once the article is accepted.
Abstract:Nowadays, facial recognition systems are still vulnerable to adversarial attacks. These attacks vary from simple perturbations of the input image to modifying the parameters of the recognition model to impersonate an authorised subject. So-called privacy-enhancing facial recognition systems have been mostly developed to provide protection of stored biometric reference data, i.e. templates. In the literature, privacy-enhancing facial recognition approaches have focused solely on conventional security threats at the template level, ignoring the growing concern related to adversarial attacks. Up to now, few works have provided mechanisms to protect face recognition against adversarial attacks while maintaining high security at the template level. In this paper, we propose different key selection strategies to improve the security of a competitive cancelable scheme operating at the signal level. Experimental results show that certain strategies based on signal-level key selection can lead to complete blocking of the adversarial attack based on an iterative optimization for the most secure threshold, while for the most practical threshold, the attack success chance can be decreased to approximately 5.0%.
Abstract:Traditional minutiae-based fingerprint representations consist of a variable-length set of minutiae. This necessitates a more complex comparison causing the drawback of high computational cost in one-to-many comparison. Recently, deep neural networks have been proposed to extract fixed-length embeddings from fingerprints. In this paper, we explore to what extent fingerprint texture information contained in such embeddings can be reduced in terms of dimension while preserving high biometric performance. This is of particular interest since it would allow to reduce the number of operations incurred at comparisons. We also study the impact in terms of recognition performance of the fingerprint textural information for two sensor types, i.e. optical and capacitive. Furthermore, the impact of rotation and translation of fingerprint images on the extraction of fingerprint embeddings is analysed. Experimental results conducted on a publicly available database reveal an optimal embedding size of 512 feature elements for the texture-based embedding part of fixed-length fingerprint representations. In addition, differences in performance between sensor types can be perceived.