Abstract:The rapid growth of unlabeled time series data, driven by the Internet of Things (IoT), poses significant challenges in uncovering underlying patterns. Traditional unsupervised clustering methods often fail to capture the complex nature of time series data. Recent deep learning-based clustering approaches, while effective, struggle with insufficient representation learning and the integration of clustering objectives. To address these issues, we propose a fuzzy cluster-aware contrastive clustering framework (FCACC) that jointly optimizes representation learning and clustering. Our approach introduces a novel three-view data augmentation strategy to enhance feature extraction by leveraging various characteristics of time series data. Additionally, we propose a cluster-aware hard negative sample generation mechanism that dynamically constructs high-quality negative samples using clustering structure information, thereby improving the model's discriminative ability. By leveraging fuzzy clustering, FCACC dynamically generates cluster structures to guide the contrastive learning process, resulting in more accurate clustering. Extensive experiments on 40 benchmark datasets show that FCACC outperforms the selected baseline methods (eight in total), providing an effective solution for unsupervised time series learning.
Abstract:In this paper, how to efficiently find the optimal path in complex warehouse layout and make real-time decision is a key problem. This paper proposes a new method of Proximal Policy Optimization (PPO) and Dijkstra's algorithm, Proximal policy-Dijkstra (PP-D). PP-D method realizes efficient strategy learning and real-time decision making through PPO, and uses Dijkstra algorithm to plan the global optimal path, thus ensuring high navigation accuracy and significantly improving the efficiency of path planning. Specifically, PPO enables robots to quickly adapt and optimize action strategies in dynamic environments through its stable policy updating mechanism. Dijkstra's algorithm ensures global optimal path planning in static environment. Finally, through the comparison experiment and analysis of the proposed framework with the traditional algorithm, the results show that the PP-D method has significant advantages in improving the accuracy of navigation prediction and enhancing the robustness of the system. Especially in complex warehouse layout, PP-D method can find the optimal path more accurately and reduce collision and stagnation. This proves the reliability and effectiveness of the robot in the study of complex warehouse layout navigation algorithm.