Abstract:Understanding multicomponent complex material systems is essential for design of advanced materials for a wide range of technological applications. While state-of-the-art crystal structure prediction (CSP) methods effectively identify new structures and assess phase stability, they face fundamental limitations when applied to complex systems. This challenge stems from the combinatorial explosion of atomic configurations and the vast stoichiometric space, both of which contribute to computational demands that rapidly exceed practical feasibility. In this work, we propose a flexible and automated workflow to build a highly generalizable and data-efficient machine learning potential (MLP), effectively unlocking the full potential of CSP algorithms. The workflow is validated on both Mg-Ca-H ternary and Be-P-N-O quaternary systems, demonstrating substantial machine learning acceleration in high-throughput structural optimization and enabling the efficient identification of promising compounds. These results underscore the effectiveness of our approach in exploring complex material systems and accelerating the discovery of new multicomponent materials.
Abstract:Nonlinear optical (NLO) materials for generating lasers via second harmonic generation (SHG) are highly sought in today's technology. However, discovering novel materials with considerable SHG is challenging due to the time-consuming and costly nature of both experimental methods and first-principles calculations. In this study, we present a deep learning approach using the Atomistic Line Graph Neural Network (ALIGNN) to predict NLO properties. Sourcing data from the Novel Opto-Electronic Materials Discovery (NOEMD) database and using the Kurtz-Perry (KP) coefficient as the key target, we developed a robust model capable of accurately estimating nonlinear optical responses. Our results demonstrate that the model achieves 82.5% accuracy at a tolerated absolute error up to 1 pm/V and relative error not exceeding 0.5. This work highlights the potential of deep learning in accelerating the discovery and design of advanced optical materials with desired properties.