Abstract:Large language models (LLMs) increasingly exhibit human-like linguistic behaviors and internal representations that they could serve as computational simulators of language cognition. We ask whether LLMs can be systematically manipulated to reproduce language-production impairments characteristic of aphasia following focal brain lesions. Such models could provide scalable proxies for testing rehabilitation hypotheses, and offer a controlled framework for probing the functional organization of language. We introduce a clinically grounded, component-level framework that simulates aphasia by selectively perturbing functional components in LLMs, and apply it to both modular Mixture-of-Experts models and dense Transformers using a unified intervention interface. Our pipeline (i) identifies subtype-linked components for Broca's and Wernicke's aphasia, (ii) interprets these components with linguistic probing tasks, and (iii) induces graded impairments by progressively perturbing the top-k subtype-linked components, evaluating outcomes with Western Aphasia Battery (WAB) subtests summarized by Aphasia Quotient (AQ). Across architectures and lesioning strategies, subtype-targeted perturbations yield more systematic, aphasia-like regressions than size-matched random perturbations, and MoE modularity supports more localized and interpretable phenotype-to-component mappings. These findings suggest that modular LLMs, combined with clinically informed component perturbations, provide a promising platform for simulating aphasic language production and studying how distinct language functions degrade under targeted disruptions.
Abstract:Decoding thoughts from brain activity offers valuable insights into human cognition and enables promising applications in brain-computer interaction. While prior studies have explored language reconstruction from fMRI data, they are typically limited to single-modality inputs such as images or audio. In contrast, human thought is inherently multimodal. To bridge this gap, we propose a unified and flexible framework for reconstructing coherent language from brain recordings elicited by diverse input modalities-visual, auditory, and textual. Our approach leverages visual-language models (VLMs), using modality-specific experts to jointly interpret information across modalities. Experiments demonstrate that our method achieves performance comparable to state-of-the-art systems while remaining adaptable and extensible. This work advances toward more ecologically valid and generalizable mind decoding.