Abstract:Anchor point placement is a crucial yet often overlooked aspect of exosuit design since it determines how forces interact with the human body. This work analyzes the impact of different anchor point positions on gait kinematics, muscular activation and energetic consumption. A total of six experiments were conducted with 11 subjects wearing the XoSoft exosuit, which assists hip flexion in five configurations. Subjects were instrumented with an IMU-based motion tracking system, EMG sensors, and a mask to measure metabolic consumption. The results show that positioning the knee anchor point on the posterior side while keeping the hip anchor on the anterior part can reduce muscle activation in the hip flexors by up to 10.21\% and metabolic expenditure by up to 18.45\%. Even if the only assisted joint was the hip, all the configurations introduced changes also in the knee and ankle kinematics. Overall, no single configuration was optimal across all subjects, suggesting that a personalized approach is necessary to transmit the assistance forces optimally. These findings emphasize that anchor point position does indeed have a significant impact on exoskeleton effectiveness and efficiency. However, these optimal positions are subject-specific to the exosuit design, and there is a strong need for future work to tailor musculoskeletal models to individual characteristics and validate these results in clinical populations.
Abstract:This paper explores the development of a control and sensor strategy for an industrial wearable wrist exoskeleton by classifying and predicting workers' actions. The study evaluates the correlation between exerted force and effort intensity, along with sensor strategy optimization, for designing purposes. Using data from six healthy subjects in a manufacturing plant, this paper presents EMG-based models for wrist motion classification and force prediction. Wrist motion recognition is achieved through a pattern recognition algorithm developed with surface EMG data from an 8-channel EMG sensor (Myo Armband); while a force regression model uses wrist and hand force measurements from a commercial handheld dynamometer (Vernier GoDirect Hand Dynamometer). This control strategy forms the foundation for a streamlined exoskeleton architecture designed for industrial applications, focusing on simplicity, reduced costs, and minimal sensor use while ensuring reliable and effective assistance.
Abstract:Musculoskeletal disorders (MSD) are the most common cause of work-related injuries and lost production involving approximately 1.7 billion people worldwide and mainly affect low back (more than 50%) and upper limbs (more than 40%). It has a profound effect on both the workers affected and the company. This paper provides an ergonomic assessment of different work activities in a horse saddle-making company, involving 5 workers. This aim guides the design of a wrist exoskeleton to reduce the risk of musculoskeletal diseases wherever it is impossible to automate the production process. This evaluation is done either through subjective and objective measurement, respectively using questionnaires and by measurement of muscle activation with sEMG sensors.
Abstract:Back-support exoskeletons are commonly used in the workplace to reduce low back pain risk for workers performing demanding activities. However, for the assistance of tasks differing from lifting, back-support exoskeletons potential has not been exploited extensively. This work focuses on the use of an active back-support exoskeleton to assist carrying. Two control strategies are designed that modulate the exoskeleton torques to comply with the task assistance requirements. In particular, two gait phase detection frameworks are exploited to adapt the assistance according to the legs' motion. The two strategies are assessed through an experimental analysis on ten subjects. Carrying task is performed without and with the exoskeleton assistance. Results prove the potential of the presented controls in assisting the task without hindering the gait movement and improving the usability experienced by users. Moreover, the exoskeleton assistance significantly reduces the lumbar load associated with the task, demonstrating its promising use for risk mitigation in the workplace.